BE SCHEME & SYLLABUS

FIRST YEAR

(I and II Semester)

(With effect from 2025-26)

Electrical and Electronics Engineering
Stream

ST JOSEPH ENGINEERING COLLEGE

AN AUTONOMOUS INSTITUTION Vamanjoor, Mangaluru - 575028

MOTTO

Service and Excellence

VISION

To be a global premier Institution of professional education and research

MISSION

- Provide opportunities to deserving students of all communities, the Christian students in particular, for quality professional education
- Design and deliver curricula to meet the national and global changing needs through student-centric learning methodologies
- Attract, nurture and retain the best faculty and technical manpower
- Consolidate the state-of-art infrastructure and equipment for teaching and research activities
- Promote all-round personality development of the students through interaction with alumni, academia and industry
- Strengthen the Educational Social Responsibilities (ESR) of the Institution

ST JOSEPH ENGINEERING COLLEGE

An Autonomous Institution

Vamanjoor, Mangaluru - 575028

Affiliated to VTU – Belagavi & Recognized by AICTE New Delhi NAAC – Accredited with A+

B.E. SCHEME & SYLLABUS (With effect from 2025-26)

Electrical and Electronics Engineering Stream

(Applicable to ECE, EEE and EVD)

FIRST YEAR

(I and II Semester)

AUTONOMY AND ACCREDITATION

St Joseph Engineering College (SJEC) is an Autonomous Institute under Visvesvaraya Technological University (VTU), Belagavi, Karnataka State, and is recognized by the All-India Council for Technical Education (AICTE), New Delhi. SJEC is registered under the trust "Diocese of Mangalore, Social Action Department".

The SJEC has been conferred Fresh Autonomous Status from the Academic Year 2021-22. The college was granted autonomy by the University Grants Commission (UGC) under the UGC Scheme for Autonomous Colleges 2018 and conferred by VTU. The UGC Expert Team had visited the college on 28-29 November 2021 and rigorously assessed the college on multiple parameters. The fact that only a handful of engineering colleges in the state have attained Autonomous Status adds to the college's credibility that has been on a constant upswing. Autonomy will make it convenient for the college to design curricula by recognizing the needs of the industry, offering elective courses of choice and conducting the continuous assessment of its students.

At SJEC, the Outcome-Based Education (OBE) system has been implemented since 2011. Owing to OBE practised at the college, SJEC has already been accredited by the National Board of Accreditation (NBA). Two of the PG programs, namely MBA and MCA programs, have accreditation from the NBA.

Also, SJEC has been awarded the prestigious A+ grade by the National Assessment and Accreditation Council (NAAC) for five years. With a Cumulative Grade Point Average (CGPA) of 3.39 on a 4-point scale, SJEC has joined the elite list of colleges accredited with an A+ grade by NAAC in its first cycle. The fact that only a small percentage of the Higher Education Institutions in India have bagged A+ or higher grades by NAAC adds to the college's credibility that has been on a constant upswing.

The college is committed to offering quality education to all its students, and the accreditation by NAAC and NBA reassures this fact. True to its motto of "Service and Excellence", the college's hard work has resulted in getting this recognition, which has endorsed the academic framework and policies that the college has been practicing since its inception. The college has been leveraging a flexible choice-based academic model that gives students the freedom to undergo learning in respective disciplines and a transparent and continuous evaluation process that helps in their holistic development.

CONTENTS

Sl No	SUBJECTS	Page No					
1	Scheme: I Semester B.E. Chemistry Group	04					
2	Scheme: II Semester B.E. Physics Group	06					
	I Semester						
3	1BMATE101- Applied Mathematics - I for Electrical and Electronics Engineering Stream	09					
4	1BCHEE102 - Applied Chemistry for Electrical and Electronics Engineering Stream	12					
5	1BCED103 - Computer Aided Engineering Drawing	16					
Engineering Science Course (ESC) - I							
6	1BESC104A - Introduction to Civil Engineering	19					
7	7 1BESC104B - Introduction to Mechanical Engineering						
8	1BESC104C - Introduction to Electrical Engineering	25					
9	1BESC104D - Introduction to Electronics and Communication Engineering	27					
10	1BESC104E - Essentials of Information Technology	30					
	Programming Language Course						
11	1BPLC105A - Introduction to C Programming	32					
12	1BENG106 - English Communication Skills	35					
13	1BICP107 - Indian Constitution and Professional Ethics	39					
14	1BETP108L - Emerging Technologies: A Primer (Inter-Disciplinary Project Based Learning)	41					
	II Semester						
15	1BMATE201 - Applied Mathematics -II for Electrical and Electronics Engineering Stream	45					
16	1BPHYE202 - Applied Physics for Electrical and Electronics Engineering Stream	48					
17	1BEEE203 - Elements of Electrical and Electronics Engineering /	52					
	1BEEC203 - Basic Electronics Engineering Science Course (ESC) - II	54					
18	1BESC204A - Introduction to Civil Engineering	57					
19	1BESC204B - Introduction to Mechanical Engineering	60					
20	1BESC204C - Introduction to Electrical Engineering	63					
21	1BESC204D - Introduction to Electronics and Communication Engineering	65					
22	1BESC204E - Essentials of Information Technology	68					
	Emerging Technology Course						
23	1BETC205 - Introduction to AI and Applications	70					
24	1BEEE206L - Elements of Electrical and Electronics Lab / 1BBEC206L - Basic Electronics Lab	73 75					
25	1BKSK207/ 1BKBK207 - Samskrutika Kannada/ Balake Kannada	77					
26	1BPFT208L - Prototype Fabrication and Testing (Project Based Learning)	82					
27	1BITS209 - Industry Oriented Training – Soft Skills	84					

St Joseph Engineering College Mangaluru

(Autonomous Institution Affiliated to VTU Belagavi)

B.E. - Scheme of Teaching and Examinations-2025 (Effective from the academic year 2025-26)

Outcome-Based Education (OBE) and Choice Based Credit System (CBCS)

I Semester – Electrical and Electronics Engineering (EEE) Stream Chemistry Group Teaching Examination Hours/Week Course title Sl.No **Course and Course** Practical/ Drawing Credits Theory Lecture CIE Marks Duration in SEE Marks Tutorial hours Total Marks Code L Applied Mathematics -I for Electrical and ASC (IC) 1BMATE101 2 Maths 2 2 03 50 50 100 041 **Electronics Engineering Stream** Applied Chemistry for Electrical and 2 ASC(IC) **1BCHEE102** 3 0 2 03 100 04 Chemistry 50 50 **Electronics Engineering Stream** 2 0 2 3 **ESC** 1BCED103 Computer Aided Engineering Drawing MEC Dept 03 50 50 100 03 Respective Engg 3 0 0 4 **ESC** 1BESC104x **Engineering Science Course-I** 03 50 50 100 03 Dept Respective Engg 5 PLC (IC) 1BPLC105A Introduction to C Programming 3 0 2 03 50 50 100 04 Dept AEC 6 1BENG106 **English Communication Skills** Humanities 0 0 02 50 50 100 01 Indian Constitution and Professional NCMC 7 0 1BICP107 Humanities 0 02 50 50 Ethics Emerging Technologies: A Primer Respective Dept AEC/SDC 8 50 50 100 01 1BETP108L (Inter-Disciplinary Project Based 0 0 2 02 (Multiple Dept) Learning) **TOTAL** 2 400 350 **750** 20 15 10

ASC-Applied Science Courses, TD/PSB- Teaching Department / Paper Setting Board, PSC- Program Specific Course, ESC- Engineering Science Courses, ETC- Emerging Technology Courses, PSCL – Program Specific Course Lab, AEC- Ability Enhancement Courses, HSMC-Humanities, Social Sciences and Management Courses, SDC- Skill Development Courses, NCMC-Non-credit Mandatory Courses, CIE-Continuous Internal Evaluation, SEE- Semester End Examination, IC – Integrated Course (Theory Course Integrated with Practical Course).

AICTE Activity Points (Students have to earn 100 activity points between 01-08 semester)

Credit Definition: 04-Credits courses are to be designed for 50 hours of Teaching-Learning Sess	
1- hour Lecture (L) per week= 1 Credit	04-Credits (IC) are to be designed for 40 hours theory and 10-12 hours of Practical Session
2-hours Tutorial (T) per week= 1 Credit	03-Credits courses are to be designed for 40 hours of Teaching-Learning Session
2- hours Practical / Drawing (P) per week	02- Credits courses are to be designed for 25 hours of Teaching-Learning Session
=1 Credit	01-Credit courses are to be designed for 12-15 hours of Teaching-Learning Session

Engineering Science Courses-I (ESC-I)						
Code	L	T	P			
1BESC104A	Introduction to Civil Engineering	3	0	0		
1BESC104B	Introduction to Mechanical Engineering	3	0	0		
1BESC104C	Introduction to Electrical Engineering	3	0	0		
1BESC104D	Introduction to Electronics and Communication Engineering	3	0	0		
1BESC104E	Essentials of Information Technology	3	0	0		

- The student has to select one course from the ESC-I group which is offered from the other engineering streams.
- For example, ECE and allied branches students shall opt for any one of the courses from the ESC-I group except, 1BESC104D Introduction to Electronics and Communication Engineering. Similarly, EEE students shall opt for any one of the courses from the ESC-I group except, 1BESC104C Introduction to Electrical Engineering.
- The students have to opt for the courses from ESC group without repeating the course in either 1st or 2nd semester.

St Joseph Engineering College Mangaluru

(Autonomous Institution Affiliated to VTU Belagavi)

B.E. - Scheme of Teaching and Examinations-2025 (Effective from the academic year 2025-26)

Outcome-Based Education (OBE) and Choice Based Credit System (CBCS)

II Semester - EEE Stream

Physics Group - (For the students who studied Chemistry Group in the I semester)

	Sl.No Course and Course Code				Н	Teaching lours/Weel	k		Exami	nation		
Sl.No					Theory Lecture	Tutorial	Practical/ Drawing	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
			A II IN A A A A A A A A A A A A A A A A		L	T	P					
1	ASC(IC)	1BMATE201	Applied Mathematics -II for Electrical and Electronics Engineering Stream	Maths	2	2	2	03	50	50	100	04
2	ASC(IC)	1BPHYE202	Applied Physics for Electrical and Electronics Engineering Stream	Physics	3	0	2	03	50	50	100	04
3	PSC	1BEEE203/ 1BEEC203	Elements of Electrical and Electronics Engineering / Basic Electronics	Respective Engg Dept	3	0	0	03	50	50	100	03
4	ESC	1BESC204x	Engineering Science Course-II	Respective Engg Dept	3	0	0	03	50	50	100	03
5	ETC	1BETC205	Introduction to AI and Applications	Any Dept	3	0	0	03	50	50	100	03
6	PSCL	1BEEE206L/ 1BBEC206L	Elements of Electrical and Electronics Lab / Basic Electronics Lab	Respective Engg Dept	0	0	2	03	50	50	100	01
7	HSMC	1BKSK207/ 1BKBK207	Samskrutika Kannada/ Balake Kannada	Humanities	1	0	0	02	50	50	100	01
8	AEC/SDC	1BPFT208L	Prototype Fabrication and Testing (Project Based Learning)	Any Dept	0	0	2	02	50	50	100	01
9	AEC/SDC	1BITS209	Industry Oriented Training – Soft Skills	Any Dept	1	0	0	02	50	-	50	-
	TOTAL 16 2 8						8		450	400	850	20
10	AICTE Activity Points (Students have to earn 100 activity points between 01-08 semester)											

ASC-Applied Science Courses, TD/PSB- Teaching Department / Paper Setting Board, PSC- Program Specific Course, ESC- Engineering Science Courses, ETC-Emerging Technology Courses, PSCL – Program Specific Course Lab, AEC- Ability Enhancement Courses, HSMC-Humanities, Social Sciences and Management Courses, SDC- Skill Development Courses, NCMC-Non-credit Mandatory Courses, CIE-Continuous Internal Evaluation, SEE- Semester End Examination, IC – Integrated Course (Theory Course Integrated with Practical Course).

Credit Definition:	04-Credits courses are to be designed for 50 hours of Teaching-Learning Session
1- hour Lecture (L) per week= 1 Credit 04-Credits (IC) are to be designed for 40 hours theory and 10-12 hours of Practic	
2-hours Tutorial (T) per week=1 Credit	03-Credits courses are to be designed for 40 hours of Teaching-Learning Session
2- hours Practical / Drawing (P) per week	02- Credits courses are to be designed for 25 hours of Teaching-Learning Session
=1 Credit	01-Credit courses are to be designed for 12-15 hours of Teaching-Learning Session

Engineering Science Courses-II (ESC-II)							
Code	Title	L	T	P			
1BESC204A	Introduction to Civil Engineering	3	0	0			
1BESC204B	Introduction to Mechanical Engineering	3	0	0			
1BESC204C	Introduction to Electrical Engineering	3	0	0			
1BESC204D	Introduction to Electronics and Communication Engineering	3	0	0			
1BESC204E	Essentials of Information Technology	3	0	0			

- The student has to select one course from the ESC-II group which is offered from the other engineering streams.
- For example, **ECE** and allied branches students shall opt for any one of the courses from the ESC-I group except, **1BESC204D Introduction to Electronics and Communication Engineering**. Similarly, **EEE** students shall opt for any one of the courses from the ESC-II group except, **1BESC204C Introduction to Electrical Engineering**.
- The students have to opt for the courses from ESC group without repeating the course in either 1st or 2nd semester.

I Semester

Applied Mathematics-I for Electrical and Electronics Engineering Stream						
Course Code	1BMATE101	CIE Marks	50			
Course True	Into quoto d	SEE Marks	50			
Course Type	Integrated	Total Marks	100			
Teaching Hours/Week (L:T:P)	(2:2:2)	SEE Duration	3 Hours			
Total Hours	40 Hours Theory+ 20 Hours Lab	Credits	4			

Course Learning Objectives:

- 1. Apply foundational concepts of calculus and differential equations to analyze geometric properties of curves, solve first and higher-order ordinary differential equations, and model physical phenomena in science and engineering.
- Apply the principles of linear algebra to solve systems of linear equations, determine eigenvalues and eigenvectors, and analyze real-world problems such as traffic flow.
- 3. Demonstrate the applications of electrical engineering and allied engineering science using modern ICT

Module-1: Polar Curves and Curvature

(8 Hours Theory)

Polar curves, angle between the radius vector and the tangent, angle between the polar curves, pedal equations. Curvature and radius of curvature in cartesian and pedal forms.

Applications: Communication signals, Manufacturing of microphones, and Image processing.

Self study: Radius of curvature (polar and parametric)

Module-2: Power Series Expansions, Indeterminate Forms and Multivariable Calculus (8 Hours Theory)

Statement and problems on Taylor's and Maclaurin's series expansion for one variable. Partial Differentiation: Partial differentiation, total derivative - differentiation of composite functions. Jacobian. Maxima and minima for a function of two variables.

Applications: Series expansion in communication signals, Errors and approximations, and vector **Self study:** Indeterminate forms - L'Hospital's rule

Module-3: Ordinary Differential Equations (ODE) of First Order and First Degree and

Exact and reducible to exact differential equations- Integrating factors on $\frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ and $\frac{-1}{M} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ only. Orthogonal trained

 $\frac{-1}{M}(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})$ only. Orthogonal trajectories (only polar)), L-R and C-R circuits.

Non-linear differential equations: Introduction to general and singular solutions, solvable for p only, Clairaut's equations,

Applications: L-R and C-R circuits.

Self study: Reducible to Clairaut's equations.

Module-4: Ordinary Differential Equations of Higher Order

(8 Hours Theory)

Higher-order linear ODEs with constant coefficients, homogeneous and non-homogeneous equations - e^{ax} , sin(ax + b), cos(ax + b), x^n only. Method of variation of parameters and Legendre's homogeneous differential equations. L-C-R circuits.

Applications: . L-C-R circuits.

Self study: Cauchy's differential equations

Module-5: Linear Algebra

(8 Hours Theory)

Elementary transformations on a matrix, Echelon form, rank of a matrix, consistency of system of linear equations. Gauss elimination, Gauss –Seidel method to solve system of linear equations. Eigen values and eigen vectors of a matrix, Rayleigh power method to determine the dominant eigen value of a matrix.

Applications: Traffic flow

Self study: Elementary transformations on a matrix.

PRACTICAL MODULE

- 1. Introduction to MATLAB
- 2. Basic Operations on Matrices
- 3. Plotting of Curves
- 4. Partial Differentiation and Jacobian
- 5. Linear Algebra I
- 6. Taylor Series and L'Hôpital's Rule7. Ordinary Differential Equations

Demo Experiment

Data Visualization using Python-Line, Bar and Pie Charts

Course Outcomes	Course Outcomes: At the end of the course the student will be able to:				
1BMATE101.1	Apply concepts of curvature and pedal equations to analyze the geometrical				
	roperties of curves and solve related engineering problems.				
1BMATE101.2	Apply Taylor's and Maclaurin's series expansions and partial differentiation				
	techniques to solve mathematical and engineering problems.				
1BMATE101.3	Apply and analyse first-order and higher-order ordinary differential equations to				
	model and interpret real-world systems such as electrical circuits and physical				
	processes.				
1BMATE101.4	Integrate techniques from multivariable calculus, differential equations to design				
	mathematical models for solving complex engineering problems.				
1BMATE101.5	Apply matrix methods (rank, echelon form, iterative methods, eigenvalues &				
	eigenvectors) to evaluate and solve systems of linear equations with engineering				
	applications				
1BMATE101.6	Apply modern mathematical tools such as MATLAB to compute, visualize, and				
	solve problems in calculus, differential equations, and linear algebra.				

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Tex	tbooks			
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44th Ed., 2021
2	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10th Ed., 2018.
3	Linear Algebra and its Applications	Gilbert Strang	Cengage Publications	4th Ed., 2022.
Ref	erence Books			
1	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill Education,	11th Ed., 2017
2	Engineering Mathematics	Srimanta Pal & Subodh C.Bhunia	Oxford University Press	3rd Ed., 2016
3	A Textbook of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	10th Ed., 2022
4	Higher Engineering Mathematics	H. K. Dass and Er. Rajnish Verma	S. Chand Publication	3rd Ed., 2014
5	Linear Algebra and its Applications	David C Lay	Pearson Publishers	4th Ed., 2018.
6	MATLAB for Engineering Mathematics: Experiential Learning Manual.	Ramananda H. S., Shubha V. S.	Iterative International Publishers (IIP),	2023.

Additional Resources: Web links/NPTEL Courses

- VTU e-Shikshana Program (All modules)
- VTU EDUSAT Program (All modules)
- https://nptel.ac.in/courses/111106135 (Linear Algebra)
- https://nptel.ac.in/courses/111105160 (Advanced Calculus)
- https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/ (Linear Algebra)
- https://ocw.mit.edu/courses/18-02sc-multivariable-calculus-fall-2010/ (Multivariate calculus)

Course Articulation Matrix

Course	Program Outcomes (POs)										
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11
1BMATE101.1	3		-	-	2	-	-	-	-	-	
1BMATE101.2	3		-	-	2	-		-		-	-
1BMATE101.3	•	2	•	-	2		-	-		-	-
1BMATE101.4	-	2	-	-	2		-	-		-	•
1BMATE101.5	3	-	-	-	2		-	-		-	-
1BMATE101.6	-	-	-	-	3		-	-		-	-

Applied Chemistry for Electrical and Electronics Engineering Stream						
Course Code	1BCHEE102	CIE Marks	50			
Course Type	Integrated	SEE Marks	50			
(Theory/Practical/Integrated)	integrated	Total Marks	100			
Teaching Hours/Week (L:T:P)	3:0:2	SEE	3 hours			
Total Hours	40 hours Theory + 12 Lab slots	Credits	04			

Course Learning Objectives: This course (1BCHEE102) objectives are to provide students with basic principles of chemistry for building technical competence in industries, research and development in the following fields,

- Materials for Energy Devices
- Nano and Quantum Dot Materials
- Functional Polymers and Hybrid Composites in Flexible Electronics
- Electrode System and Electrochemical Sensors
- Corrosion Science and E-waste Management

Module 1: Materials for Energy Devices (08 hours)

Semiconductors: Introduction, n-type and p-type semiconductor materials (organic and inorganic), difference between organic and inorganic semiconductors.

Energy Storage Devices: Introduction, classification of batteries - primary, secondary and reserve battery, characteristics - capacity, power density, shelf life & cycle life. Construction and working of lithium-ion battery, advantages in EV applications.

Energy Conversion Devices: Introduction, construction, working principle, advantages and limitations of photovoltaic cell (PV cell). Working principle and applications of Microelectromechanical systems (MEMS)-based energy harvesters.

Self study: Organic photovoltaics — working principle and applications of Poly (3-hexylthiophene) (P3HT) as a donor and Phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. Construction and working of ultra-small asymmetric super capacitor and its applications in IoT/wearable devices.

Module 2: Nano and Quantum Dot Materials (08 hours)

Nanomaterials: Introduction, size dependent properties of nanomaterials - surface area, catalytic, optical properties, and electrical conductivity. Synthesis of TiO₂ nanoparticles by solgel method and its user in sensor applications.

Quantum Dot Materials: Introduction, types, optical and electronic properties of quantum dots (ODs).

Inorganic Quantum Dot Materials (IQDMs): Introduction, synthesis and properties of silicon based QDs by Sol-Gel method and CdSe Quantum Dots by hot injection method and applications in optoelectronic devices.

Self study: Organic Quantum Dot Materials (OQDMs) - Introduction, synthesis and properties of chitosan-carbon quantum dots hydrogel applications in next-generation flexible and wearable electronics, synthesis and properties of Graphene Quantum Dots using citric acid method its applications in emerging electronics.

Module 3: Functional Polymers and Hybrid Composites in Flexible Electronics (08 hours)

Stretchable and Wearable Microelectronics: Introduction, basic principle and working of lithography for micro-patterned copper deposition. **Polymers:** Introduction, synthesis, conduction mechanism polyaniline and its electronic devices applications. Molecular weight of polymers - number average and weight average molecular weight of polymers – numerical problems. Synthesis and properties of Polyvinylidene Fluoride (PVDF) and its applications in E-nose devices.

Polymer Composites: Introduction, synthesis and properties of epoxy resin – magnetite (Fe₃O₄) composite (ultrasonication method) for sensors applications. Synthesis and properties of Kevlar Fiber Reinforced Polymer (KFRP) for smart electronic devices applications.

Self study: Synthesis, properties and applications of PDMS (Polydimethylsiloxane) and its uses in e-skin (electronic skin) and RFID applications.

Module 4: Electrode System and Electrochemical Sensors (08 hours)

Electrode System: Introduction, types of electrodes, overview of Nernst equation, reference electrode - construction, working, and applications of calomel electrode. Ion selective electrode - definition, construction, working of glass electrode, determination of pH using glass electrode, construction and working of concentration cell, and numerical problems.

Sensing Methods: Introduction, principle, and instrumentation of colorimetric sensors; its application in the estimation of copper in PCBs. Principle and instrumentation of potentiometric sensors and its applications in the estimation of iron in steel, conductometric sensors; its application in the estimation of acid mixture in sample.

Module 5: Corrosion Science and E-waste Management (08 hours)

Corrosion Chemistry: Introduction, electrochemical theory of corrosion, types of corrosion differential metal corrosion in electronic circuits and differential aeration corrosion – waterline and pitting corrosion. Corrosion control - galvanization and anodization, cathodic protection and impressed current method. Corrosion penetration rate (CPR) - definition, importance and weight loss method numerical problems.

Metal Finishing: Introduction, technological importance of metal finishing, difference between electroplating & electroless plating, electroplating of chromium for hard and decorative coatings, electroless plating of copper on PCBs.

E-waste: Introduction, sources of e-waste, need of e-waste management, and effects of e-waste on environment and human health. Extraction of gold from e-waste by bioleaching method.

PRACTICAL MODULE

Part - A

- 1. Estimation of total hardness of water by the EDTA method.
- 2. Estimation of percentage of CaO in cement by the EDTA method.
- 3. Determination of chemical oxygen demand (COD) of industrial effluent sample.
- 4. Estimation of iron in TMT bar by diphenyl amine indicator method.
- 5. Determination of total alkalinity of the given water sample.

Part - B

- 6. Estimation of acid mixture by conductometric sensor (Conductometry).
- 7. Estimation of iron in rust sample by Potentiometric sensor (Potentiometry).
- 8. Determination of pKa of vinegar using a pH sensor (Glass electrode).
- 9. Estimation of copper present in e-waste by optical sensor (Colorimetry).
- 10. Determination of the viscosity coefficient of an organic solvent using Ostwald's viscometer.

Part - C

Demonstration experiments (any one):

- 1. Green synthesis of copper nanoparticles for conductive ink applications.
- 2. Smartphone-Based colorimetric estimation of total phenolic content in coffee products.
- 3. Data analysis of pKa of a weak acid and its interpretation using origin software.
- 4. Chemical structure drawing using software: Chem Draw/Chem Sketch.
- 5. Determination of dissolved oxygen by Winkler's method.

Part - D

Beyond the syllabus/Offline/virtual lab experiments (any one):

- 1. Flame Photometric estimation of alkali and alkaline earth metals.
- 2. Determination of Hardness/COD in water sample.

Course Outcom	Course Outcomes: At the end of the course the student will be able to:				
1BCHEE102.1	Develop an intuitive understanding of the principles, and applications of semiconductors, energy storage devices, and energy conversion systems for advancing sustainable and smart technologies.				
1BCHEE102.2	Interpret the synthesis, properties, and applications of nanomaterials and quantum dot materials for emerging electronic and sensor technologies.				
1BCHEE102.3	1BCHEE102.3 Analyse polymer-based materials and composite materials for engineering applications.				
1BCHEE102.4	Illustrate the principles of electrode systems and sensing methods to analyze electrochemical processes				
1BCHEE102.5	Apply electrochemical concepts to evaluate corrosion control and e-waste management techniques.				
1BCHEE102.6	Investigate the chemical substances by chemical and instrumental methods to solve multidisciplinary engineering problems.				

Sl.	Title of the Book	Name of the	Name of the	Edition
No		Author/s	Publisher	and Year
Tex	tbooks			
1	Chemistry for Engineering Students	B. S. Jai Prakash, R. Venugopal, Sivakumaraiah & Pushpa Iyengar.	Subash Publications	6th Edition, 2018
2	Engineering Chemistry along with lab experiments	R.V.Gadag & A. Nityananda Shetty	I K International Publishing House Private Ltd. New Delhi.	1st Edition, 2019
3	Engineering Chemistry	P. C. Jain & Monica Jain	Dhanpat Rai Publications, New Delhi.	17th Edition 2016
Ref	erence Books			
1	Engineering Chemistry	O. G. Palanna,	Tata McGraw Hill Education Pvt. Ltd. New Delhi	2nd Edition 2017
2	Nanochemistry A Chemical Approach to Nanomaterials	G.A.Ozin & A.C. Arsenault	RSC publishing	2nd Edition 2008
3	Wiley Engineering Chemistry	Wiley India	Wiley India Pvt. Ltd. New Delhi	2nd Edition 2013
4	Polymer Science	V R Gowariker, N V Viswanathan, Jayadev, Sreedhar	Newage Int. Publishers	4th Edition 2021
5	Corrosion Engineering	M. G. Fontana	Tata McGraw Hill Publishing	3rd Edition 2017

Web links and Video Lectures (e-Resources):

- 1. The Next-Generation of Energy Storage https://youtu.be/HT21wrGl6oM
- 2. Photovoltaics with Van der Waals Semiconductors https://youtu.be/aG2F-fd2drM

- 3. Silicon, Semiconductors, & Solar Cells https://youtu.be/ivWXuOd5SrI
- 4. The Future of Photovoltaics https://www.youtube.com/watch?v=BGdCj3-PEoE
- 5. The Green Hydrogen Revolution https://www.youtube.com/watch?v=xvtOPHsukzE
- 6. **Lithium-ion battery** https://www.youtube.com/watch?v=VxMM4g2Sk8U
- 7. **Novel MEMS-Based Piezoelectric Multi-Modal Vibration Energy Harvester** https://www.youtube.com/watch?v=0bjRNq1PKak
- 8. Sol-gel Synthesis of TiO₂ Nanoparticles https://youtu.be/XIjDw5Sw9c4
- 9. Graphene, Quantum dots & Nanotechnology https://youtu.be/IB2zbQvnwXw
- 10. Graphene Quantum Dots (GQDs) and its application for Supercapacitors https://youtu.be/FNohb7ZKxMI
- $11. \ Graphene \ Quantum \ Dots \ for \ biomedical \ \& \ optoelectronics \ applications$
 - https://www.youtube.com/watch?v=Y-nZbZzBOPg
- 12. Graphene quantum dot https://en.wikipedia.org/wiki/Graphene_quantum_dot
- 13. Flexible electronic skin could help humans and machines interact
- https://youtu.be/NCOwWEMEQN8
 14. Bright, flexible, stretchable: electronics of the future
 - https://youtu.be/u_2YRTmOTWQ
- 15. Polyaniline: Conducting polymer Synthesis, properties and applications
 - https://youtu.be/ygtbo5KDXeI
- 16. Polymer Nano composites as Chemiresistive Sensors -

https://youtu.be/whyIdJab1kM

- 17. **Polymer composite: Kevlar fiber Synthesis properties and application** https://youtu.be/3TYH-8pPDV4
- 18. Calomel Electrode https://youtu.be/xS60SGWSw4s
- 19. Working of glass electrode of pH meter https://youtu.be/zJTOLce-WC8
- 20. Corrosion Penetration Rate (CPR): Easy Numerical Problem Solving https://www.youtube.com/watch?v=dmZtRntO1QI
- 21. **Potentiometry** https://www.youtube.com/watch?v=Kbta_BXZ4Vs&t=73s

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

- https://www.vlab.co.in/broad-area-chemical-sciences
- https://demonstrations.wolfram.com/topics.php
- https://interestingengineering.com/science

Course Articulation Matrix

Course		Program Outcomes (POs)									
Outcomes (COs)	PO1	P02	E04	P04	50d	90d	704	80d	60d	PO10	P011
1BCHEE102.1	3	3	ı	ı	ı	ı	ı	ı	-	ı	-
1BCHEE102.2	ı	ı	3	ı	ı	3	ı	ı	-	-	-
1BCHEE102.3	ı	ı	3	ı	ı	3	ı	ı	-	ı	-
1BCHEE102.4	3	ı	3	ı	ı	ı	ı	ı	-	-	-
1BCHEE102.5	3	-	3	-	-	-	-	-	-	-	-
1BCHEE102.6	3	1	-	3	1	-	-	-	-	1	1

Computer Aided Engineering Drawing									
Course Code	1BCED103	CIE Marks	50						
Course Type	Theory	SEE Marks	50						
(Theory/Practical/Integrated)	Theory	Total Marks	100						
Teaching Hours/Week (L:T:P)	2:0:2	SEE	3 Hours						
Total Hours	40 hours	Credits	03						

Course Learning Objectives:

CLO1: To expose the students to standards and conventions followed in preparation of engineering drawings.

CLO2: To make them understand the concepts of orthographic and isometric projections.

CLO3: To develop the ability of conveying the engineering information through drawings.

CLO4: To make them understand the relevance of engineering drawing to different engineering domains.

CLO5: To develop the ability of producing engineering drawings using drawing instruments.

CLO6: To enable them to use computer aided drafting tools for the generation of drawings.

Module-1 (4 Hours)

Introduction to CAED (for CIE only)

Significance of Engineering drawing with respect to various branches*, BIS Conventions of Engineering Drawing, Free hand sketching of engineering drawing, Scales. Introduction to Computer Aided Drafting software, Coordinate system and reference planes HP, VP, RPP & LPP of 2D/3D environment. Selection of drawing sheet size and scale. Commands and creation of Lines, coordinate points, axes, polylines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet and curves.

Introduction to Orthographic Projections of Points, Lines

Orthographic projections of Points and Orthographic projections of Lines (Placed in First quadrant only).

Module-2 (8 Hours)

Orthographic Projections of Planes:

Orthographic projections of planes viz triangle, square, rectangle, pentagon, hexagon, and circular lamina (Placed in First quadrant only using change of position method).

Module-3 (12 Hours)

Orthographic Projection of Solids:

Orthographic projection of right regular solids (**Solids Resting on HP only**): Prisms & Pyramids (triangle, square, rectangle, pentagon, hexagon), Cones, Cubes & Tetrahedron.

Module-4 (8 Hours)

Isometric Projections:

Isometric scale, Isometric projection of hexahedron (cube), right regular prisms, pyramids, cylinders, cones and spheres. Isometric projection of combination of two simple solids.

Module-5 (08 Hours)

Development of Lateral Surfaces of Solids:

Development of lateral surfaces of right regular prisms, cylinders, pyramids and cones resting with base on HP only. Development of lateral surfaces of their frustums and truncations.

Significance of Engineering drawing with respect to various branches*

Multidisciplinary Applications & Practice (For CIE Only):

Free hand Sketching; True free hand, Guided Free hand, Roads, Buildings, Utensils, Hand tools & Furniture etc.

Electric Wiring and lighting diagrams; Like, Automatic fire alarm, Call bell system, UPS system, Basic power distribution system using suitable software

Basic Building Drawing; Like, Architectural floor plan, basic foundation drawing, steel

structures- Frames, bridges, trusses using AutoCAD or suitable software,

Electronics Engineering Drawings- Like, Simple Electronics Circuit Drawings, practice on layers concept.

Graphs & Charts: Like, Column chart, Pie chart, Line charts, Gantt charts, etc. using Microsoft Excel or any suitable software.

Course Outcomes: At the end of the course the student will be able to:							
1BCED103.1	Prepare engineering drawings as per BIS conventions mentioned in the relevant						
	codes.						
1BCED103.2	Produce computer generated drawings using CAD software.						
1BCED103.3	Use the knowledge of orthographic projections to represent engineering information/ concepts and present the same in the form of drawings.						
1BCED103.4	Develop isometric drawings of simple objects.						
1BCED103.5	Develop the lateral surfaces of different objects.						
1BCED103.6	Use the knowledge of engineering drawing to represent interdisciplinary engineering components or systems through graphical representation.						

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text l	Books			
1.	Engineering drawing	N. D. Bhatt & V. M. Panchal	Charotar Publishing House Gujarat.	48 th edition, 2005
2.	Computer Aided Engineering Drawing	Prof. M. H. Annaiah	New Age International Publisher, New Delhi.	2009
Refer	rence Books			
1.	Computer Aided Engineering Drawing	S. Trymbaka Murthy	I.K. International Publishing House Pvt. Ltd., New Delhi,	3 rd revised edition, 2006.
2.	Engineering Graphics	K R Gopalakrishna	Subash Publishers, Bangalore.	32 nd edition, 2005
3.	Fundamentals of Engineering Drawing with an Introduction to interactive computer Graphics for design and Production	Luzadder Warren J, Duff John M	Prentice – Hall of India Pvt. Ltd., New Delhi.	Eastern Economy Edition, 2005
4.	A Primer on Computer Aided Engineering Drawing		Published by VTU, Belgaum.	2006

Web links/Video Lectures/MOOCs

1. https://nptel.ac.in/courses/112103019/

Course Articulation Matrix

Course		Program Outcomes (PO)											
Outcomes (CO)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11		
1BCED103.1	2	-	-	-	2	-	-	-	-	-	-		
1BCED103.2	-	2	-	-	3	-	-	-	-	-	-		
1BCED103.3	-	2	-	-	2	-	-	-	-	-	-		
1BCED103.4	-	2	-	-	2	-	-	-	-	-	-		
1BCED103.5	-	2	-	-	2	-	-	-	-	-	-		
1BCED103.6	-	-	2	-	2	-	-	-	-	-	-		

INTRODUCTION TO CIVIL ENGINEERING									
Course Code	1BESC104A	CIE Marks	50						
Course Type	Theory	SEE Marks	50						
(Theory/Practical/Integrated)	Theory	Total Marks	100						
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE	3 Hours						
Total Hours	40 hours	Credits	03						

Course Learning Objectives:

- 1. To make students learn the scope of various specializations of Civil engineering.
- 2. To make students learn the concepts of sustainable infrastructure
- 3. To develop students' ability to analyse the problems involving forces and moments with their applications.
- 4. To make students learn the concepts of Equilibrium, types of beams and supports, and Support Reactions.
- 5. To develop the student's ability to find out the centroid and its applications.

Module-1 Civil Engineering Disciplines and Building Science (8 hours)

Importance and Scope of various fields of Civil Engineering: Surveying, Structural Engineering, Geotechnical Engineering, Water Resources Engineering, Transportation Engineering, Environmental Engineering, Construction Planning, and Project Management.

Materials of Construction: Types and Uses of Bricks and Autoclaved Aerated Concrete (AAC) Blocks, Cement, Structural Steel, and Concrete.

Structural Elements of a Building: Concept of Foundation, Plinth, Lintel, Chejja, Masonry wall, Column, Beam, Slab, and Staircase.

Module-2 Sustainable and Green Infrastructure Development (8 hours)

Societal and Global Impact of Infrastructure:

Introduction to sustainable development goals, Smart city concept, clean city concept, Safe city concept. Environment: Water Supply and Sanitary systems, urban air pollution management, Solid waste management, identification of Landfill sites, urban flood control.

Module-3 Analysis of Force System (8 hours)

Concept of idealization, system of forces, principles of transmissibility, superposition and physical independence, Resolution and composition of forces, Resultant of concurrent and non-concurrent coplanar force systems, Moment and Couple of forces, Varignon's theorem: Numerical examples.

Module-4 Equilibrium and Support Reactions (8 hours)

Equilibrium of Coplanar Concurrent forces: Free body diagram, equations of equilibrium, Lami's Theorem, and Numerical examples.

Equilibrium of Coplanar Non-Concurrent forces: Types of loadings, beams and supports, Concept of Statically determinate and indeterminate structures, Numerical examples on Statically determinate beams.

Module-5 Centroid of Plane areas (8 hours)

Importance of centroid and center of gravity, Derivation of the centroid of rectangle, triangle, semicircle, and quadrant of a circle using method of integration, Numerical examples of centroid of built-up sections.

Course Outcomes: At the end of the course, the student will be able to:								
1BESC104A.1	Explain the fundamental concepts of various disciplines of Civil engineering							
1BESC104A.2	Assess the societal impact of infrastructure development							
1BESC104A.3	Evaluate the sustainability aspects of the built environment through the appropriate selection of green materials and the interpretation of rating systems.							
1BESC104A.4	Apply the system of force principles to solve coplanar force systems.							

1BESC104A.5	Analyze the equilibrium of coplanar force systems.
1BESC104A.6	Locate the centroid of simple and composite plane areas.

Sl. No.	Title of the Book	Name of the Publisher	Edition and Year	
Textb	ooks	Author/s		1001
1	Basic Civil Engineering and Engineering Mechanics,	Bansal R. K., Rakesh Ranjan Beohar and Ahmad Ali Khan,	Laxmi Publications	3rd edition, 2015
2	Building Construction	Rangwala	Charotar Publishing House Pvt. Ltd	33rd Edition, 2016
3	Elements of Civil Engineering and Engineering Mechanics	Kolhapure B K,	ЕВРВ	8th Edition 2014
4	Elements of Civil Engineering and Engineering Mechanics	H.J.Sawant and S.P.Nitsure	Technical publications	2nd Edition, 2012
5	Elements of Civil Engineering and Engineering Mechanics	M N Sheshaprakash and Ganesh Mogaveer B	PHI Learning Private Limited	3rd Edition, 2014
Refere	ence Books			
1	Engineering Mechanics	Bhavikatti S S,	New Age International	7th Edition, 2019
2	Engineering Mechanics	Timoshenko S, Young D. H., Rao J. V.,	Pearson Press	5th Edition, 2017
3	Engineering Mechanics: Principles of Statics and Dynamics	R. C. Hibbler	Pearson	14th Edition, 2016
4	Mechanics for Engineers, Statics and Dynamics	F. P. Beer and E. R. Johnston	McGraw Hill	12th Edition, 2019
5	Engineering Mechanics	Irving H. Shames	Prentice Hall	4th Edition, 2005
6	Engineering Mechanics: Statics	J. L. Meriam. L. and G. Kraige.	Willey India	9th Edition, 2018

Additional Resources: Web links

 $\underline{https://www.youtube.com/watch?v=nGfVTNfNwnk\&list=PLOSWwFV98rfKXq2KBphJz95rao7q8}\\ \underline{PpwT}$

https://www.youtube.com/watch?v=nkg7VNW9UCc&list=PLOSWwFV98rfKXq2KBphJz95rao7q8PpwT&i ndex=2

https://www.youtube.com/watch?v=3YBXteL-qY4

 $\frac{https://www.youtube.com/watch?v=z95UW4wwzSc\&list=PLOSWwFV98rfKXq~2KBphJz95r~ao7q8PpwT\&index=10}{}$

https://www.youtube.com/watch?v=lheoBL2QaqU&list=PLOSWwFV98rfKXq2 KBphJz95rao

7q8PpwT&index=7

https://www.youtube.com/watch?v=atoP5_DeTPE

https://www.youtube.com/watch?v=ksmsp9OzAsI

https://www.youtube.com/watch?v=x1ef048b3CE

 $\underline{https://www.youtube.com/watch?v=l_Nck-X49qc}$

https://play.google.com/store/apps/details?id=appinventor.ai_igarc322.Resul tant_Force

 $\underline{https://www.youtube.com/watch?v=RIBeeW1DSZg}$

https://www.youtube.com/watch?v=R8wKV0UQtlo

https://www.youtube.com/watch?v=0RZHHgL8m_A

https://www.youtube.com/watch?v=Bls5KnQOWkY

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning •

 $\underline{https://www.youtube.com/watch?v=\!Zrc_gB1YYS0}$

https://www.youtube.com/watch?v=Hn_iozUo9m4

Course Articulation Matrix

Course		Program Outcomes (POs)											
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
1BESC104A.1	3												
1BESC104A.2	3					2		2	2				
1BESC104A.3	3	3				2							
1BESC104A.4	3	3											
1BESC104A.5	3	3											
1BESC104A.6	3	3											

Introduction to Mechanical Engineering									
Course Code	1BESC104B	CIE Marks	50						
Course Type	Thoomy	SEE Marks	50						
(Theory/Practical/Integrated)	Theory	Total Marks	100						
Teaching Hours/Week (L:T:P)	3:0:0	SEE	3 Hours						
Total Hours	40 hours	Credits	03						

Course Learning Objectives:

- 1. Acquire a fundamental understanding role of Mechanical Engineering in NTM.
- 2. Acquire a basic knowledge of renewable energy resources.
- 3. Acquire knowledge of various engineering materials and metal joining techniques.
- 4. Acquire knowledge of IC engines, EVs & Hybrid vehicles.
- 5. Acquire essential experience on machine tools and power transmission system
- 6. Acquire knowledge of basic concepts on CNC, mechatronics and robotics.

Module-1 (8 hours)

Energy Sources and Power Plants: Introduction and application of energy sources, Construction and working of Hydel power plant, Thermal power plant, nuclear power plant, Solar power plant, Tidal power plant, Wind power plant and concept of bio-fuels.

Non-Traditional Machining Processes: Ultrasonic Machining (USM), Electrochemical Machining (ECM), Electrical Discharge Machining (EDM), Electron Beam Machining (EBM) and Laser Beam Machining (LBM)

Self-Study Component: Study additional renewable energy technologies and their impact on future power generation.

Module-2 (8 hours)

Engineering Materials: Types, properties and applications of ferrous and non-ferrous metals, ceramics, composites, smart materials and shape memory alloys.

Metal Joining Processes: Soldering, Brazing and Welding: Definition & Classification of soldering, brazing, and welding. Brief description of arc welding, Oxy-acetylene gas welding and types of flames.

Self-Study Component: Explore advanced materials and their role in modern manufacturing applications.

Module-3 (8 hours)

Fundamentals of IC Engines: Components and working principle of 4-stroke petrol and diesel engines, Application of IC Engines.

Insight into future mobility technology: Brief description & Components of Electric and Hybrid Vehicles, Advantages and disadvantages of EVs and Hybrid Vehicles.

Self-Study Component: Compare conventional IC engines with electric vehicle powertrains through case studies.

Module-4 (8 hours)

Machine Tools and Operations: Working principle of lathe, lathe operations: turning, facing, knurling, working principle of drilling, drilling operations: drilling, boring, reaming, working principle of milling machine, milling operations: slot milling and plane milling (Sketches of operations of lathe, drilling and milling must be drawn for explanation in the exam)

Gear Drives: Types - spur, helical, bevel, worm and rack and pinion, velocity ratio, Gear Trains and their application: simple and compound Gear Trains

Self-Study Component: Study applications of different gear trains in real-life mechanical systems.

Module-5 (8 hours)

Introduction to Modern Manufacturing Systems: Introduction, components of CNC, advantages and applications of CNC, 3D Printing.

Automation in industry: Fixed, programable & flexible automation and basic elements with block diagrams and concept of open-loop and closed-loop mechatronic system.

Introduction to Robotics: Robot configurations, applications, advantages and disadvantages. **Self-Study Component:** Explore recent advancements in CNC, automation, and robotics used in smart manufacturing industries.

Course Outcom	Course Outcomes: At the end of the course the student will be able:							
1BESC104B .1	Classify energy sources, power plants, and non-traditional machining processes							
IBESCIO-B .1	with their applications.							
1BESC104B .2	Analyze the suitability of non-traditional machining processes (USM, ECM, EDM,							
1DL5C104D .2	EBM, LBM) for engineering applications.							
1BESC104B .3	Select engineering materials and compare metal joining processes for specific							
IDESC104D .5	applications.							
1BESC104B .4	Compare IC engines with electric and hybrid vehicles in terms of components,							
1DL3C104D .4	performance, and limitations.							
1BESC104B .5	Demonstrate basic machine tools and analyze the applications of gear drives and							
1DESC104D .5	gear trains.							
1BESC104B .6	Evaluate emerging trends in modern manufacturing systems such as CNC, 3D							
1DESC104D .0	printing, automation, and robotics.							

Sl. No.	Title of the Book	Title of the Book Name of the Author/s Pub		Edition and Year	
Textl	oooks			1001	
1	Elements of Engineering Mechanical	K R Gopalakrishna	Subhas Publications	38 th Edition 2018	
2	Text Book of Elements of Mechanical Engineering	S Trymbaka Murthy	MEDTECH (Scientific International Pvt Ltd)	5 th Edition 2019	
3	Elements of Engineering Mechanical	Hajra Choudhury	Media Promoters, New Delhi	Vol 1 & 2 2001	
Refer	rence Books				
1	Elements of Engineering Mechanical	Dr. A. S. Ravindra	Thomson Press (India) Ltd	8 th Edition 2011	
2	Introduction to Robotics: Mechanics and Control	Craig J. J	Pearson International Education	3 rd Edition 2005	
3	Mechatronics-Principles Concepts and Applications	Nitaigour Premchand Mahalik	Tata McGraw Hill	1 st Edition 2003	
4	Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing	Ian Gibson, David W. Rosen, Brent Stucker	Springer	2 nd Edition 2015	
5	Modern Electric, Hybrid Electric and FuelCell Vehicles.	odern Electric, Hybrid MehrdadEhsani, Yimir ectric and FuelCell Gao, Sebastien E. Gay CRC Press LLC			

6	Modern Maching Process	1	McGraw Hill Education India Pvt. Ltd.	2000
---	------------------------	---	--	------

Weblinks/Video Lectures/MOOCs

1. **MOOC:** https://nptel.ac.in/courses/112/105/112105123/

2. **MOOC:** https://nptel.ac.in/courses/112/107/112107208/

3. **MOOC:** https://nptel.ac.in/courses/112/103/112103262/

4. **NPTEL:** https://www.youtube.com/watch?v=GQHCnWl2U6I

Course Articulation Matrix

Course Outcomes (CO)		Program Outcomes (PO)										
	PO1	PO2	РОЗ	PO4	PO5	90d	PO7	PO8	60d	PO10	PO11	
1BESC104B.1	3	-	1	-	1	-	-	-	-	1	-	
1BESC104B.2	-	3	-	-	-	-	-	-	-	-	-	
1BESC104B.3	-	-	2	-	-	-	-	-	-	-	-	
1BESC104B.4	-	-	-	2	-	-	-	-	-	-	-	
1BESC104B.5	-	-	-	-	-	-	-	-	-	-	-	
1BESC104B.6	-	-	-	-	-	-	-	-	-	-	-	

Introduction to Electrical Engineering									
Course Code	1BESC104C	CIE Marks	50						
Course Type	Theory	SEE Marks	50						
(Theory/Practical/Integrated)	Theory	Total Marks	100						
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE	3 Hours						
Total Hours	40 hours	Credits	03						

Course Learning Objectives:

- 1. Illustrate the behavior of circuit elements in single-phase circuits.
- 2. Comprehend the importance of three phase AC circuits and connections.
- 3. Explain the construction and operation of transformers, DC generators and motors and induction motors.
- 4. Discuss concepts of circuit protecting devices and earthing.
- 5. Explain electric power generation, electricity billing, equipment and personal safety measures

Module-1 Power Generation and DC circuits

8 hours

Introduction: Conventional and non-conventional energy resources; Advantages and limitations, general structure of electrical power systems using single line diagram approach.

Power Generation: Hydel, nuclear, solar & wind power generation (Block Diagram approach).

DC Circuits: Ohm's Law and its limitations, Concepts of KVL and KCL (maximum two branches), Power and Energy. (Numericals covering all the concepts).

Module-2 AC circuits 8 hours

AC Fundamentals: Definitions of waveform, time period, frequency, amplitude, phase, phase difference, average value, RMS value, form factor, peak factor. Voltage and current relationship with phasor diagrams in R, L and C circuits (No power equation derivations). Concept of Impedance in R-L, R-C, R-L-C Series circuits. Active power, reactive power and apparent power. Concept of power factor. (Numericals covering all the concepts).

Three Phase Circuits: Generation of Three phase AC quantity, star and delta connection, relationship between line and phase quantities (Excluding proof & Numericals).

Self-Study: Advantages & Limitation of three phase system over single phase system

Module-3 DC Machines & Synchronous Machines

8 hours

DC Generator: Principle of operation, constructional details, types of generators (DC Shunt &Series) [Excluding Numericals]

DC Motor: Principle of operation, types of motors [Excluding Numericals]

Synchronous Generators: Principle of operation, types and construction. [Excluding Numericals] **Self-Study:** Advantages and applications of DC Generators/Motors.

Module-4 AC Machines 8 hours

Transformers: Necessity of transformer, principle of operation, Types and construction of single phase transformers, EMF equation, losses. (Numericals on EMF equations & Transformation ratio) **Three-phase induction Motors**: Concept of rotating magnetic field (excluding the derivation), Principle of operation, constructional features of motor, types – squirrel cage and wound rotor. Slip and its significance. (Numericals on Slip).

Module-5 Electrical Safety

8 hours

Electricity Bill: Power rating of household appliances including air conditioners, PCs, laptops, printers. Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, **Self-Study:** Case Study on calculation of electricity bill for domestic consumers.

Equipment Safety measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits.

Personal safety measures: Electric shock, earthing and its types, safety precautions to avoid shock.

Course Outcomes: At the end of the course the student will be able to:							
1BESC104C.1	Describe the concept of electric power generation using various energy						
IDESCIU4C.1	resources.						
1BESC104C.2	Apply basic laws of electrical engineering to analyze the DC circuits.						
1BESC104C.3	Solve numericals on single phase and three phase AC circuits						
1BESC104C.4	Discuss the construction and operation of DC electrical machines						
1BESC104C.5	Discuss the construction and operation of AC electrical machines.						
1BESC104C.6	Illustrate the use of circuit protective devices and earthing.						

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
Textb	ooks									
1	Basic Electrical	D C Kulshreshtha.	Tata McGraw	1 st Edition						
1	Engineering.		Hill.	2019.						
2	A text book of Electrical	B.L. Theraja.	S Chand and	Reprint						
	Technology.	-	Company	edition 2014.						
Refer	ence Books									
1	Basic Electrical	D.P Kothari and I. J.	Tata McGraw Hill	4 th Edition,						
1	Engineering,	Nagrath,		2019.						
2	Principles of Electrical	V. K. Mehta, Rohit	S Chand and	2 nd Edition,						
2	Engineering & Electronics	Mehta,	Company	2015.						
Addit	Additional Resources: Web links/NPTEL Courses									
	• https://nptel.ac.in/courses/10	8105112 (Fundamentals of Ele	ctrical Engineering)							

Course Articulation Matrix

Course Outcomes		Program Outcomes (POs)										
(COs)	PO1	P02	P03	P04	PO5	P06	PO7	P08	P09	PO10	PO11	
1BESC104C.1	3	-	-	-	-	-	-	-	-	-	-	
1BESC104C.2	3	3	-	-	1	-	-	-	-	-	-	
1BESC104C.3	3	2	-	-	1	-	-	-	-	-	-	
1BESC104C.4	3	-	-	-	-	-	-	-	-	-	-	
1BESC104C.5	3	1	-	-	-	-	-	-	-	-	-	
1BESC104C.6	3	-	-	-	-	-	-	-	-	-	-	

1: Low 2: Medium 3: High

Introduction to Electronics and Communication Engineering									
Course Code	1BESC104D	CIE Marks	50						
Course Type	Theory	SEE Marks	50						
(Theory/Practical/Integrated)	Theory	Total Marks	100						
Teaching Hours/Week (L:T:P)	3:0:0	SEE	3 Hours						
Total Hours	40 Hrs	Credits	03						

Course Learning Objectives: The objective of the course is to

- Develop a conceptual and analytical foundation in semiconductor devices, particularly rectifier and voltage regulation circuits.
- Gain the ability to interpret oscillator behavior and operational amplifier configurations in analog signal processing.
- Build computational skills in handling various number systems relevant to digital logic.
- Acquire the skills to design and analyze basic logic circuits using fundamental digital components.
- Familiarize with the evolution, architecture, and applications of embedded systems in modern electronics.
- Introduce the basic principles of communication systems with emphasis on analog modulation methods.

Module-1 Semiconductor Diodes and Power Supply Circuits (8 hours)

N-type and P-type Semiconductors, The PN junction, Forward and Reverse Biased Junction, Characteristics and Parameters, Diode approximations, Half-Wave Rectification (HWR), Full-Wave Rectification (FWR), Capacitor Filter Circuits (full wave & half wave), Zener diode Voltage Regulators with and without load.

Activities: Virtual lab experiments on rectifiers

Self-Learning Topics: Full wave capacitor filter circuits, Zener diode voltage regulator without load.

Textbook 1: 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.6

Module-2 Oscillators and Applications of Operational Amplifiers (8 hours)

Oscillators – Barkhausen criterion, sinusoidal and non-sinusoidal oscillators, Crystal controlled oscillators (Only concepts, working, and waveforms. No mathematical derivations)

Textbook 2: 7.7, 7.13.

Operational Amplifiers (Op-Amp) – Introduction, Op-Amp symbol, characteristics of ideal and practical Op-Amps, Basic Op-Amp circuits: Inverting and Non-inverting amplifiers, Linear applications of Op-Amp: Voltage follower, Summer, Subtractor, Integrator, Differentiator

Activities: Multisim-based experiments on Op-Amp as Inverting and Non-inverting amplifiers, Voltage follower, Summer, Subtractor, Integrator and Differentiator.

Self-Learning Topics: Non Inverting Amplifier, Voltage follower.

Textbook 2: 6.1 and 6.2.

Module-3 Digital Logic Fundamentals and Combinational Circuits (8 hours)

Boolean Algebra and Logic Circuits: Introduction, Number systems & Conversion: Decimal, Binary, Hexadecimal, Octal, Complement of Binary numbers, Boolean algebra theorems, Logic gates.

Combinational Circuits: Adders: Half adder and Full adder.

Activities: Demonstrate the working of basic gates and De Morgan's law using trainer kits.

Self-Learning Topics: Conversion: Octal to Hexadecimal and vice versa.

Textbook 2: 10.1, 10.2, 10.4, 10.5.1, 10.5.2

Module-4 Fundamentals of Embedded Systems and Architectures (8 hours)

Embedded Systems – Definition, Embedded Systems Versus General Computing Systems, Classification of Embedded Systems, Major application areas of Embedded Systems, Purpose of Embedded System, A typical Embedded System, Core of the Embedded System, Microprocessor versus Microcontroller, RISC versus CISC, Harvard versus Von-Neumann architecture.

Activities: LED, serial monitor, ultrasonic sensor using Arduino.

Self-Learning Topics: Major application areas of Embedded Systems

Textbook 3: 1.1, 1.2, 1.4, 1.5, 1.6, 2.1, 2.1.1

Module-5 Introduction to Communication Systems (8 hours)

Introduction, Elements of communication systems, Types of modulation (only concepts): AM and FM, Difference between AM and FM, Modulation, Multiplexing, Transmission lines, Concept of Radio wave and antennas, Satellite Communication, Principle of operation of mobile phone, Optical fiber communication.

Activities: Demonstrate the working of AM and FM.

Self-Learning Topics: Principle of operation of mobile phone.

Textbook 2: 18.1, 18.2, 18.11, 18.12, 18.13, 18.14, 18.15, 18.17, 18.18, 18.22

Course Outcome	Course Outcomes: At the end of the course the student will be able to:						
1BESC104D . 1	Develop a conceptual and analytical foundation in semiconductor devices, particularly rectifier and voltage regulation circuits.						
1BESC104D.2	Gain the ability to interpret oscillator behavior and operational amplifier configurations in analog signal processing.						
1BESC104D.3	Build computational skills in handling various number systems relevant to digital logic.						
1BESC104D.4	Acquire the skills to design and analyze basic logic circuits using fundamental digital components.						
1BESC104D . 5	Familiarize with the evolution, architecture, and applications of embedded systems in modern electronics.						
1BESC104D . 6	Introduce the basic principles of communication systems with emphasis on analog modulation methods						

Sl.No	Title of the Book	Title of the Book Name of the Author/s Publisher									
Textbo	Textbooks										
1	Electronic Devices and Circuits	David A Bell	Oxford University Press	4 th Edition, 2008.							
2	Basic Electronics	asic Electronics D P Kothari and I J Nagrath McGraw Hill Education (India)									
3	Introduction to Embedded Systems	Shibhu KV	McGraw Hill Education (India)	2 nd Edition, 2017.							
Referen	nce Books										
1	Electronic Devices	Thomas L. Floyd	Pearson Education	9 th Edition, 2012.							
2	Electronic Devices R Boylestad, Pearson and Circuit Theory Nashelskey Education		11 th Edition, 2013.								

Web links and Video Lectures (e-Resources):

- 1. Basic Electronics Virtual Lab-IIT Kharagpur: http://vlabs.iitkgp.ac.in/be/
- 2. Digital Electronics https://www.youtube.com/watch?v=2xXErGeeb_Q 3.
- 3. https://www.youtube.com/watch?v=Yryi1bbmUjU.

Course Articulation Matrix

Course		Program Outcomes (POs)									
Outcomes (COs)	P01	P02	P03	P04	P05	PO6	PO7	PO8	P09	PO10	P011
1BESC104D.1	2	-	-	-	3	-	-	-	1	-	-
1BESC104D.2	1	-	-	-	3	-	-	-	1	-	-
1BESC104D.3	1	2	-	-	-	-	-	-	-	-	-
1BESC104D.4	1	2	-	-	-	-	-	-	-	-	-
1BESC104D.5	1	-	-	-	-	-	-	-	-	-	-
1BESC104D . 6	1	_	-	-	-	-	-	-	-	-	-

Essentials of Information Technology							
Course Code	1BESC104E	CIE Marks	50				
Course Type	Theory	SEE Marks	50				
(Theory/Practical/Integrated)	Theory	Total Marks	100				
Teaching Hours/Week (L: T:P)	(3:0:0)	SEE	3 Hours				
Total Hours	40 hours	Credits	03				

Course Learning Objectives:

- Identify different information representation and manipulation schemes.
- Apply operating system principles and algorithmic techniques.
- Utilize knowledge of networking and cybersecurity essentials.
- Analyse ethical and legal issues in information technology.
- Explore software engineering principles and database systems.
- Design simple web applications and explore benefits and risks of social media.

Module-1 Data Storage and Manipulation (8 hours)

Data Storage: Bits and Their Storage, Main Memory, Mass Storage, Representing Information as Bit Patterns, The Binary System, Storing Integers, Storing Fractions.

Data Manipulation: Computer Architecture, Machine Language, Program Execution, Arithmetic/Logic Instructions, Communicating with Other Devices, Programming Data Manipulation. **Textbook 1: Chapter 1: 1.1-1.7, Chapter 2: 2.1-2.6**

Module-2 Operating Systems and Algorithms (8 hours)

Operating Systems: The History of Operating Systems, Operating System Architecture, Coordinating the Machine's Activities, Handling Competition Among Processes, Security.

Algorithms: The Concept of an Algorithm, Algorithm Representation, Algorithm Discovery, Iterative Structures, Recursive Structures. **Textbook 1: Chapter 3, Chapter 5: 5.1-5.5**

Module-3 Networking and Cyber Security (8 hours)

Networking and the Internet: Network Fundamentals, The Internet, The World Wide Web, Internet Protocols, Security.

Cybersecurity: Overview—What is Cybersecurity? Brief History of Cybersecurity Events, The Basic Information Security Model, Cyber Hygiene, Teams in Cybersecurity.

Ethical Issues in Information Technology: Overview, Ownership Rules, Ethics and Online Content. **Textbook 1: Chapter 4 Textbook 2: Chapter 16 and 17**

Module-4 Software Engineering and Database Systems (8 hours)

Software Engineering: The Software Engineering Discipline, The Software Life Cycle, Software Engineering Methodologies, Modularity, Tools of the Trade.

Database Systems: Database Fundamentals, The Relational Model.

Textbook 1: Chapter 7:7.1-7.5, Chapter 9: 9.1-9.2

Module-5 Introduction to HTML and Social Media (8 hours)

Introduction to HTML and Website Development: What is HTML?, Cascading Style Sheets (CSS), Website Design and Storyboarding, Structure of a Website.

Social Media: Benefits of Social Media, Risks of Social Media. Textbook 2: Chapter 12 and 18

Self-study (**for Learning Activity, Not for SEE**): **i.** Word Processors. ii. Introduction to Spreadsheets and iii. Introduction to Presentation Applications.

Course Outcomes: At the end of the course the student will be able to:

1BESC104E.1	Apply the fundamentals of data storage, representation, and manipulation in computer systems, including binary systems, memory, and program execution.
1BESC104E.2	Identify the architecture of operating systems and develop algorithmic solutions using iterative and recursive structures.

1BESC104E.3	Apply networking concepts and cybersecurity practices in everyday tasks.
1BESC104E.4	Apply software engineering principles and database fundamentals to design efficient software systems.
1BESC104E.5	Develop simple web pages using HTML and CSS.
1BESC104E.6	Analyse the benefits and risks of social media.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
Textb	Textbooks									
1	Computer Science an overview	J. Glenn Brookshear and Dennis Brylow	Pearson Education Limited	12 th Edition 2017						
2	Fundamentals of Information Technology	Roy, Shambhavi; Daniel, Clinton; and Agrawal, Manis	Digital Commons at The University of South Florida	1 st Edition 2023						
Refer	ence Books									
1	Introduction to Information Technology	V. Rajaraman	PHI Learning	3 rd Edition 2018						
2	Information Technology in Theory	Pelin Aksoy	Cengage	1 st Edition 2012						

Web links and Video Lectures (e-Resources):

- https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01281821790293196830622_shared/overview (Major Attacks on Networks)
- https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01436050621856153674/over view(Software Development Life Cycle)
- https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013382690411003904735_sh ared/overview (Computer Networks)
- https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013382690411003904735_sh ared/overview (Software Engineering)

Course Articulation Matrix

Course		Program Outcomes (POs)									
Outcomes (COs)	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011
1BESC104E.1	3										
1BESC104E.2		3	2								
1BESC104E.3	3						2				
1BESC104E.4	3	2	2								
1BESC104E.5	2		3			2					
1BESC104E.6		3					2				

Introduction to C Programming							
Course Code	1BPLC105A	CIE Marks	50				
Course Type	Integrated	SEE Marks	50				
(Theory/Practical/Integrated)	Integrated	Total Marks	100				
Teaching Hours/Week (L:T:P)	3:0:2	SEE	3 Hours				
Total Hours	40 hours Theory + 10 Lab slots	Credits	04				

Course Learning Objectives: The objective of the course is to

- Understand the basic concepts of Computer System and Computer Programming.
- Gain knowledge of Algorithms and Flowcharts.
- Explain the basic concepts of C Programming Language Constructs.
- Design and Develop Programming Skills.

Module-1 Introduction to C Programming Language, Managing input/output Operation (08 hours)

Introduction to Programming: Flowcharts & Algorithms

Introduction to C Programming Language: Basic structure of a C program, Character sets, Tokens, Constants, Variables, Declaration and Initialization of Variables, Data types, Assignment statements.

Managing input/output Operation: Reading and writing a character, Formatted Input and Output.

TextBook 1: Chapter 1,

TextBook 2: Chapter 1(Pg. No.:1-5), 2(Pg. No.:22-40), 4(Pg. No.:81-101)

Module-2 Operators and Expressions, Decision Making and Branching, Looping (08 hours)

Operators and Expressions: Arithmetic, Relational, Logical, Assignment, Increment and Decrement, Conditional Operators, Arithmetic Expressions and Evaluation, Precedence and Associativity, Type conversions, Operator precedence and associativity.

Decision Making and Branching: Decision making statements: if, if-else, nested if-else, cascaded if-else, switch statement, goto Statements.

Decision Making and Looping: for, while, do-while, branching statements: break and continue.

TextBook 2: Chapter 3(Pg. No.:51-72), 5(Pg. No.:111-135), 6(149-169)

Module-3 Array and Strings (08 hours)

Array: Introduction, One - Dimensional, Two- Dimensional arrays: declaration, initialization, Basic Algorithms: Binary Search and Bubble Sort.

Strings: Introduction to Strings, Declaration and initialization, reading strings from the terminal, writing strings to screen, String handling functions.

TextBook 2: Chapter 7(Pg. No.:189-212), 8Pg. No.:(234-255)

Module-4 User Defined Functions (08 hours)

User defined Functions: Introduction, Need for User-defined functions, A multifunctional Program, Elements of user defined functions, Definition of functions, Return Values and their types, Function Calls, Function declaration, Category of functions.

TextBook 2: Chapter 9(Pg. No.:267-291)

Module-5 Structures and Pointers (08 hours)

Structures: Introduction, defining a structure, Declaring Structure variables, Accessing Structure Members, Initialization.

Pointers: Introduction, Understanding Pointers, Accessing the Address of Variable, Declaring pointer variables, initialization of pointers, accessing variables through its pointer.

TextBook 2: Chapter 10(Pg. No.:320-329, 11(Pg. No.:353-361)

Self-study (for Learning Activity, Not for SEE):

- Recursion
- Dynamic Memory Allocation

PRACTICAL MODULE

- 1. a) Develop a C program to convert temperature from degree to Fahrenheit.
 - b) Develop a C program to find GCD and LCM of given numbers.
- 2. Develop a C program to find the roots of quadratic equations.
- 3. Develop a C program to simulate a simple calculator that performs arithmetic operations like addition, subtraction, multiplication, and division only on integers. Error messages should be reported, if any attempt is made to divide by zero.
- 4. a) Develop a C program to find the factorial of a number.
 - b) Develop a C program that finds prime numbers within a given range.
- 5. Develop a C program to generate Floyd's triangle and also the inverted Floyd's triangle for given rows.
- 6. Develop a C program that implements Linear Search. The program should accept an array of elements and a key element as input from the user, then search for the key in the array and display its position if found, or display an appropriate message if the key is not present.
- 7. Develop a C program to perform Matrix Multiplication.
- 8. Develop a C program to find the length of a string, copy one string to another and concatenate two strings using user defined functions.
- 9. Develop a C program to declare the structure of employees and display the employee records with higher salary among two employees.
- 10. a) Develop a C program to add two numbers using the pointers to the variables.
 - b) Develop a C program to swap two numbers using pointers through a user defined function.

Open Ended Problem

(Any one open-ended experiment must be carried out as part of the course)

- 1. Write a C program to implement a simple game of your choice. The game should use fundamental C concepts such as variables, loops, conditionals, input/output and if possible, random number generation.
- 2. Write a C program to manage a simple database system for any domain (No real databases, Use suitable data structures).

Course Outcomes: At the end of the course the student will be able to:					
1BPLC105A.1	Outline the basics of algorithms, flowchart, C programming language, and				
	apply the concepts of input/output statements in C				
1BPLC105A.2	Evaluate expressions using C operators and apply the concepts of decision				
1D1 LC103A.2	making in C.				
1BPLC105A.3	Construct C programs using arrays and strings.				
1BPLC105A.4	Construct C programs using user defined functions.				
1BPLC105A.5	Develop C programs using structures.				
1BPLC105A.6	Develop C programs using pointers.				

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Text	books				
1	The Art of Programming Through Flowcharts & Algorithms	Anil Bikas Chaudhuri	Firewall Media	1 st Edition 2005	

2	Programming in ANSI C	E. Balagurusamy	Tata McGraw- Hill, India	7 th Edition 2022					
Refer	Reference Books								
1	Programming in C	Reema Thareja	Oxford University	3 rd Edition 2023					
2	The 'C' Programming Language	Brian W. Kernighan and Dennis M. Ritchie	Prentice Hall of India	2 nd Edition 2015					
3	Let Us C	Yashavant Kanetkar	BPB Publications	19 th Edition 2022					

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/106104128
- https://www.coursera.org/specializations/c-programming
- https://www.tutorialspoint.com/what-is-an-algorithm-and-flowchart-in-c-language
- https://www.w3schools.com/c/c_intro.php
- https://www.geeksforgeeks.org/c/c-programming-language/
- https://infyspringboard.onwingspan.com/web/en/login

Course Articulation Matrix

Course Outcomes (COs)	Program Outcomes (POs)										
	PO1	PO2	PO3	PO4	SOA	PO6	70 q	80d	60d	PO10	PO11
1BPLC105A.1	1										
1BPLC105A.2	1	2	2								
1BPLC105A.3		1	2								
1BPLC105A.4		1	2								
1BPLC105A.5		1	2			1		1			
1BPLC105A.6		1	2			1		1			

English Communication Skills				
Course Code	1BENG106	CIE Marks	50	
Course Type	Thoony	SEE Marks	50	
(Theory/Practical/Integrated)	Theory	Total Marks	100	
Teaching Hours/Week (L:T:P:)	(1:0:0)	SEE	2 Hours	
Total Hours	15 hours	Credits	01	

- Build essential verbal, non-verbal, and phonetic communication skills for clarity and effectiveness.
- Use interpersonal skills in group discussions, presentations, and professional interactions.
- Apply formal writing, email etiquette, and creative content development for employability.
- Communicate effectively in digital platforms, following netiquette and academic integrity.
- Prepare job applications, resumes, and perform confidently in interviews.

Module-1 COMMUNICATION SKILLS (3 Hours)

Glimpses of Essential English for Engineers (General Overview) Communication Skills: Process, Verbal and Non-Verbal, Proxemics, Chronemics and Barriers. Writing: Sentence structures. Speaking & Listening: Listening to English Pronunciation – English Phonemes – Intelligible Accent – Speech Organs- Syllable Structures.

Teaching Methodology	TBTL (Task-Based Teaching Learning) & Eclectic Approach		
Language Lab	Quiklrn.com		
Digital Tools	ALL 44 sounds of English in 75 minutes - https://www.youtube.com/watch?v=QxQUapA-2w4&t=51s . AI-based grammar and writing tools (e.g., Grammarly, ChatGPT, Quillbot) AI-based pronunciation tools (Google Speech-to-Text) for real-time feedback		
Reading Material	"The Chimney Sweeper" by William Blake Martin Luther King Jr's "I Have a Dream" Speech		
Assessment Techniques and Tools	Role Play: Formal/informal scenarios, Group Discussion (GD), Case Studies Analysis: Identify barriers and suggest solutions, Observation Rubric (for body language, tone, time cues).		

Module-2 INTERPERSONAL SKILLS (3 Hours)

Importance of interpersonal skills in workplace-types, Group Discussions-Debates, giving technical presentations. Reading: Reading the Interview of an Achiever (Skimming and Scanning) (case studies) Grammar: Sentence patterns. Vocabulary Development: Idioms and Phrases, Phrasal verbs.

C105•	
Teaching	TBTL (Task-Based Teaching Learning) & Eclectic Approach
Methodology	
Language Lab	Quiklrn.com
Digital Tools	Google Meet / Zoom + AI Transcription- Practice group discussions with live transcription. Grammarly - Highlights grammar issues with explanations. Oxford Learner's Dictionaries (https://www.oxfordlearnersdictionaries.com/) - Includes etymology, pronunciation, synonyms/antonyms.
Assessment	Group discussion performance (listening, turn-taking, clarity) Technical
Techniques and	presentations (confidence, structure, clarity)
Tools	Role plays (relevance, tone, spontaneity)

Activity: Read a short interview of an achiever (e.g., A. P. J. Abdul Kalam,
Sudha Murthy)
LMS (Learning Management Systems): Moodle or Google Classroom for

LMS (**Learning Management Systems**): Moodle or Google Classroom for submissions and reflections.

Module-3 ENGLISH FOR EMPLOYABILITY (3 Hours)

Writing: Formal Letter writing (Enquiry, Order, and Complaint). Tenses – Reported Speech- Voice - Email Etiquettes, Structure, Writing and Responding to Emails. Paragraph Writing (Descriptive, Argumentative, Expository, Short Story, and Narrative), Blog Writing. **Reading:** Proof Reading (Spelling, Punctuation, Grammar). Error Identification Exercises. **Speaking:** Questions & Requests (Wh questions and Question tags).

Pedagogy	TBTL (Task-Based Teaching Learning) & Eclectic Approach			
Language Lab	Quiklrn.com			
	Grammarly – Check grammar, tone, spelling			
Digital Tools	<u>Canva</u> – Free templates to create posters, ads, infographics			
	Adobe Express – Visual storytelling and ad design			
Assessment Techniques	Paragraph Writing - Descriptive, Argumentative, Expository, Short			
and Tools	Story, Narrative - Paragraph rubric (structure, logic, vocabulary,			
	grammar) Writing - Tool : Digital submission + rubric for content			
	originality, reader engagement, clarity.			
	Speaking Skills - Oral assessment rubric (intonation, clarity,			
	accuracy)			

Module-4 ENGLISH IN DIGITAL WORLD (3 Hours)

Writing: Framing of search terms / keywords in search engines/ Commands for search on open AIs - Tools to support synchronous communication such as webinar platforms, and asynchronous communication such as forums and social media - Online communication - Types - pros and cons of online communication. Acceptable online roles and behaviours - Netiquettes - Etiquettes of social media. Problems and opportunities in handling digital resources

Pedagogy	TBTL (Task-Based Teaching Learning) & Eclectic Approach			
Language Lab	Quiklrn.com			
Digital Tools	Google Meet - Integrated with Gmail, free for students Google Classroom - Forum, assignments, comments			
Assessment Techniques and Tools	Write a short essay (150–200 words) on the problems and opportunities. Evaluation rubric (structure, coherence, grammar).			
	Grammar assessment rubric (before vs after comparison, understanding of corrections).			

Module-5: APPLYING FOR JOBS (3 Hours)

Listening: TED Talks. Speaking: Mock Interview, Telephone Interviews, Job Interview- language used in formal professional tone. Writing: Job Applications and Resumes Grammar: Modal verbs Vocabulary Development: Technical Vocabulary.

Pedagogy Language Lab	TBTL (Task-Based Teaching Learning) & Eclectic Approach			
Language Lab	Quiklrn.com			
Assessment Techniques and	Listening to professional talks, analyzing tone and structure -			
Tools	https://www.ted.com/talks			
	Non-verbal cues in professional reading -			
	https://www.youtube.com/c/Mindsight			
	Grammar AI practice - https://quillbot.com/grammar-check			
Assessment	Reading comprehension tests, Resume & Application rubric			
Techniques and Tools	(content, layout, tone, language), Grammar MCQs /			
	Vocabulary worksheet			

Course Outcomes:	At the end of the course the student will be able:
1BENG106.1	To use English as a communication tool through the four skills of listening, speaking, reading and writing.
1BENG106.2	To Speak and interact with fellow speakers about familiar topics, express personal views and exchange information
1BENG106.3	.To apply English grammar to improve the quality of learning other subjects in the general education curriculum.
1BENG106.4	To Communicate effectively in digital platforms, following netiquette and academic integrity
1BENG106.5	To Prepare job applications, resumes, and perform confidently in interviews.
1BENG106.6	To use English for further education or immediate employment upon completion

Sl. No.	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year
Refer	ence Books			
1	Technical Communication: Principles and practice	Raman, M., & Sharma, S.	Oxford University Press	2015
2	English for Engineers and Technologists.	Kumar, A. R.	Orient Black Swan	2008
3	A Course in English Pronunciation.	Yadav, D. P.	Notion Publications	2022

Additional Resources: Web links/NPTEL Courses

Language lab: Quiklrn.com

Learn English – https://learnenglish.

britishcouncil.org/ • Take IELTS - https://www.britishcouncil.in/exam/ielts

British Council Apps - bbcLearnEnglishonline Grammar

IELTS Word Power

Course Articulation Matrix

Course		Program Outcomes (POs)									
Outcomes)1)2)3	40)5	P06	7.0	80	60	PO10	PO11
(COs)	P01	PO2	PO3	P04	PO5	PC	PO7	P08	P09	PC	PC
1BENG106.1	-	-	-	-	-	-	-	1	3	-	2
1BENG106.2	-	-	-	-	-	-	-	-	3	-	2
1BENG106.3	-	-	-	-	-	-	-	-	3	-	2
1BENG106.4	-	-	-	-	-	-	-	-	3	-	2
1BENG106.5	-	-	-	-	-	-	-	1	3	-	2
1BENG106.6	-	-	-	-	-	-	-	1	3	-	2

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.
- Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks

Continuous Internal Evaluation (CIE):

Two Unit Tests each of 30 Marks (duration 1 hour)

- First test is in the 8th week after the completion of 30-40 % of the syllabus
- Second test is in the 15th week after completion of 80-90% of the syllabus

Average of the two tests shall be taken into consideration.

Two assignments each of 10 Marks

2 assignments of 10 marks each have to be submitted during the semester and the total marks shall be considered for CIE.

Semester End Examination (SEE)

Semester End Examination (SEE) will be conducted for 50 marks and it will be descriptive.

Indian Constitution and Professional Ethics			
Course Code	1BICP107	CIE Marks	50
Course Type	Thoony	SEE Marks	
(Theory/Practical/Integrated)	Theory	Total Marks	50
Teaching Hours/Week (L:T:P)	(1:0:0)	SEE	
Total Hours	15 hours	Credits	

- 1. To know about the basic structure of the Indian Constitution.
- 2. To know the Fundamental Rights (FRs), DPSP's, and Fundamental Duties (FD's) of our constitution.
- 3. To know about our Union Government, political structure & codes, and procedures.
- 4. To know the State Executive & Elections system of India.
- 5. To learn the Amendments and Emergency Provisions, other important provisions given by the constitution.

Module-1 Introduction to Indian Constitution

The Necessity of the Constitution, The Societies before and after the Constitution adoption. Introduction to the Indian constitution, The Making of the Constitution, The Role of the Constituent Assembly. The Preamble of Indian Constitution & Key concepts of the Preamble. Salient features of India Constitution.

Module-2 FR's, FD's and DPSP's

Fundamental Rights and its Restriction and limitations in different Complex Situations. Directive Principles of State Policy (DPSP) and its present relevance in our society with examples. Fundamental Duties and its Scope and significance in Nation building.

Module-3 Union Executive

Parliamentary System, Union Executive – President, Prime Minister, Union Cabinet, Parliament - LS and RS, Parliamentary Committees, Important Parliamentary Terminologies. Supreme Court of India, Judicial Reviews and Judicial Activism.

Module-4 State Executive & Elections, Amendments and Emergency Provisions

State Executive, Election Commission, Elections & Electoral Process. Amendment to Constitution (How and Why) and Important Constitutional Amendments till today. Emergency Provisions.

Module-5 Professional Ethics

Ethics & Values. Types of Ethics. Scope & Aims of Professional & Engineering Ethics. Positive and Negative Faces of Engineering Ethics. Clash of Ethics, Conflicts of Interest. The impediments to Responsibility. Trust & Reliability in Engineering, IPRs (Intellectual Property Rights), Risks, Safety and liability in Engineering.

Course Outcomes: At the end of the course the student will be able:

1BICP107.1	To analyse the basic structure of Indian Constitution.		
1BICP107.2	To develop awareness and understanding of the Fundamental Rights, Directive Principles of State Policy, and Fundamental Duties provided in the Constitution.		
1BICP107.3	To gain knowledge of the Union Government, its political structure, codes, and procedures		
1BICP107.4	To learn about the structure and functions of the State Executive and the electoral system of India		
1BICP107.5	To study the Amendments, Emergency Provisions, and other significant provisions of the Constitution.		
1BICP107.6	To apply principles of intellectual property rights (IPRs), trust, reliability, risk, and safety to make ethical and responsible engineering judgments.		

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ooks			
1	Constitution of India	C R Kothari and Gaurav Garg	Naidhruva Edutech Learning Solutions	2022
2	Engineering Ethics	M.Govindarajan, S.Natarajan, V.S.Senthilkumar	Prentice –Hall	2004
Refere	ence Books			
1	"Samvidhana Odu" - for Students & Youths	Justice HN Nagamohan Dhas, Sahayana, kerekon.	Sage Publications India Pvt Ld New Delhi	2004
2	Constitution of India, Professional Ethics and Human Rights"	Shubham Singles, Charles E. Haries, and et al	Cengage Learning India, Latest Edition	2019
3	Introduction to the Constitution of India	Durga Das Basu (DD Basu)	Prentice –Hall	2008

Additional Resources: Web links/NPTEL Courses

https://www.constitutionofindia.net/read/

https://infosecawareness.in/cyber-laws-of-india

Course Articulation Matrix

Course		Program Outcomes (POs)									
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
(CO3)	P(P(P(P(P(P(P(P(P(
1BICP107.1	-	-	-	-	-	-	2	-	-	-	2
1BICP107.2	-	-	-	-	-	-	2	-	-	-	2
1BICP107.3	-	-	-	-	-	-	2	-	-	-	2
1BICP107.4	-	-	-	-	-	-	2	-	-	-	2
1BICP107.5	-	-	-	-	-	-	2	-	-	-	2
1BICP107.6	-	-	-	-	-	-	3	-	-	-	3

1: Low 2: Medium 3: High

Assessment Structure:

There is only Continuous Internal Evaluation (CIE) for this course.

• A student must score at least 40% of 50 marks, i.e., 20 marks in CIE.

Continuous Internal Evaluation (CIE):

Two Unit Tests each of 30 Marks (duration 1 hour)

- First test is in the 8th week after the completion of 30-40 % of the syllabus
- Second test is in the 15th week after completion of 80-90% of the syllabus

Two assignments each of 10 Marks

2 assignments of 10 marks each have to be submitted during the semester and the total marks shall be considered for CIE.

Emerging Technologies: A Primer									
Course Code	1BETP108L	CIE Marks	50						
Type of the Course	Practical	SEE Marks	50						
Teaching Hours/Week (L:T:P)	(0:0:2)	Total	100						
Credits	1	Exam Hours	02						

- 1. To develop a strong awareness of the ethical and societal implications associated with emerging technologies.
- 2. To instil practical skills related to AI (Artificial Intelligence), Blockchain, Digital Twins, RPA (Robotic Process Automation), and Cybersecurity.
- 3. To enable experiences of working on a team project, allowing students to apply their knowledge and skills to a real-world problem and present their findings effectively.

Module-1: AI and Web 3.0 (06 Hours)

Introduction to Emerging Technologies: Overview of the course, Importance of staying updated with emerging technologies, Ethical and societal considerations.

Artificial Intelligence (AI): Definition and history of AI, Machine learning and deep learning, Applications of AI in various industries, In-Class Assignment: AI in Everyday Life, Homework Assignment: Building a Simple Chatbot.

Web 3.0: Blockchain and Metaverse - Introduction to Blockchain technology, Metaverse and its potential, In-Class Assignment: Creating a Simple Smart Contract, Homework Assignment: Exploring a Metaverse Platform.

Module-2: Smart Manufacturing and Robotic Process Automation (06 Hours)

Smart Manufacturing and Digital Twins: The concept of Smart Manufacturing, Role of IoT and sensors, Digital Twins and their applications, In-Class Assignment: Explore the designs of Digital Twins, Homework Assignment: Analysing a Smart Manufacturing Case Study.

Robotic Process Automation: Understanding Robotic Process Automation (RPA), Types of robots and their applications, Human-robot collaboration, In-Class Assignment: Automating a Task with RPA, Homework Assignment: Researching Advances in Robotics.

Module-3: Cybersecurity and Quantum Computing (06 Hours)

Cybersecurity: Importance of cybersecurity in the digital age, Threats and vulnerabilities, Security best practices, In-Class Assignment: Ethical Hacking Simulation, Homework Assignment: Creating a Cybersecurity Plan.

Quantum Computing: Introduction to Quantum Mechanics, Quantum bits (qubits) and quantum gates, Quantum supremacy and real-world applications. Homework Assignment: Exploring Quantum Computing Research.

Module-4: Project Work (06 Hours)

Team Formation, Synopsis submission, Mid-Term Progress Review, Final Project Presentation.

Course Outcomes: At the end of the course the student will be able to:

1BETP108L.1	Assess the ethical and societal impacts of emerging technologies,						
IBEII 100E.1	demonstrating critical thinking skills.						
1BETP108L.2	Apply AI and Web 3.0 concepts to develop practical solutions and explore						
IDETF 100L.2	real-world applications.						
1BETP108L.3	Apply RPA principles and tools to automate common tasks to boost						
IDETF100L.3	productivity.						
1BETP108L.4	Explain common cybersecurity threats and recommend best practices to						
IDEIFIUOL.4	safeguard digital assets.						

1BETP108L.5	Explain the fundamentals of quantum computing and its real-world applications.
1BETP108L.6	Develop a solution using emerging technologies for a real-world problem in
152111002.0	teams.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textboo	oks			
1	Artificial Intelligence: A Modern Approach	Stuart Russell, Peter Norvig	Pearson	Fourth Edition, 2020
2	Blockchain Technology	Chandramouli Subramanian, Asha A George, Abhilash K A and Meena Karthikeyan	Universities Press (India) Pvt. Ltd.	First Edition 2020
3	Metaverse and Web 3: A Beginner's Guide: A Beginner's Guide: A Digital Space Powered with Decentralized Technology	Utpal Chakraborty	BPB Publications	First Edition, 2022
4	Learning Robotic Process Automation: Create Software robots and automate business processes with the leading RPA tool - UiPath	Alok Mani Tripathi	Packt Publishing	First Edition 2018
5	Cybersecurity: The Beginner's Guide: A comprehensive guide to getting started in cybersecurity	Dr. Erdal Ozkaya	Packt Publishing Limited	First Edition 2019
6	Quantum Computing: A Gentle Introduction	Eleanor G. Rieffel, Wolfgang H. Polak.	MIT Press	First Edition 2014
Referen	ice Books			
1	Smart Manufacturing Technologies for Industry 4.0: Integration, Benefits, and Operational Activities	Edited By: Jayakrishna Kandasamy, Kamalakanta Muduli, V. P. Kommula, Purushottam L. Meena	CRC Press	First Edition 2022
2	The Robotic Process Automation Handbook: A Guide to Implementing RPA Systems	Tom Taulli	Apress Berkeley, CA	2020
3	The Cyber Security Handbook: Prepare for, respond to and recover from cyber-attacks with the IT Governance Cyber Resilience Framework (CRF)	Alan Calder	IT Governance Publishing	First Edition 2020

Web links/Video Lectures:

Introduction to Emerging Technologies:

- 1. https://aiethics.princeton.edu/case-studies/case-study-pdfs/
- 2. https://research.aimultiple.com/ai-ethics/
- 3. https://news.harvard.edu/gazette/story/2020/10/ethical-concerns-mount-as-ai-takes-bigger-decision-making-role/
- 4. https://www.sciencedirect.com/science/article/pii/S0268401223000816
- 5. https://www.youtube.com/watch?v=G2fqAlgmoPo
- 6. https://www.youtube.com/watch?v=zizonToFXDs

Web 3.0: Blockchain and Metaverse

- 1. What is Ethereum? | ethereum.org
- 2. Navigating Remix Remix Ethereum IDE 1 documentation (remix-ide.readthedocs.io)
- 3. Solidity Solidity 0.6.8 documentation (soliditylang.org)
- 4. https://www.youtube.com/watch?v=nalMdCI pv8&t=765s
- 5. The Decentralized Autonomous Organization and Governance Issues by Usman W. Chohan :: SSRN
- 6. Ethereum Smart Contract Best Practices (consensys.github.io)
- 7. https://hackernoon.com/hack-solidity-reentrancy-attack

Smart Manufacturing and Digital Twins:

- 1. https://www.youtube.com/watch?v=nwFed03fS_s
- 2. https://www.youtube.com/watch?v=ScmK-bKJ4MI

RPA and Robotics:

- 1. https://www.youtube.com/watch?v=9URSbTOE4YI
- 2. https://www.youtube.com/watch?v=UEbw7dIOg0g
- 3. https://www.uipath.com/resources/automation-case-studies
- 4. https://www.ibm.com/products/robotic-process-automation/case-studies

Cybersecurity:

- 1. https://www.getastra.com/blog/security-audit/what-is-vapt/
- 2. https://owasp.org/www-project-top-ten/
- 3. https://owasp.org/www-project-mutillidae-ii/
- 4. https://www.youtube.com/watch?v=JAtwZoW76-I
- 5. Threat modelling (STRIDE framework): https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
- 6. Cyber Kill Chain: https://www.lockheedmartin.com/en-us/capabilities/cyber-kill-chain.html

Quantum Computing:

- 1. https://www.youtube.com/watch?v=e3fz3dqhN44
- 2. https://quantumai.google/

Course Articulation Matrix

Course		Program Outcomes (POs)									
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11
1BETP108L.1	-	-	-	-	-	3	-	2	-		-
1BETP108L.2	-	2	-	-	3	-	-	-		-	1
1BETP108L.3	-	-	-	3	2	-	-	-		-	-
1BETP108L.4	-	-	-	-	3	-		-	-	-	1
1BETP108L.5	2	-	-	-	3	-	-	-	-	-	-
1BETP108L.6	-	-	2	-	3	-		-	2	-	1

II Semester

Applied Mathematic	Applied Mathematics-II for Electrical and Electronics Engineering Stream								
Course Code	1BMATE201	CIE Marks	50						
Course Type	Interrupted	SEE Marks	50						
	Integrated	Total Marks	100						
Teaching Hours/Week (L:T:P)	(2:2:2)	SEE Duration	3 Hours						
Total Hours	40 Hours Theory+ 20 Hours Lab	Credits	4						

- 1. Apply the concepts of integral calculus and vector calculus to model and solve problems in engineering applications such as area, volume.
- 2. Apply appropriate numerical methods to find approximate solutions of algebraic, transcendental, and ordinary differential equations and to perform interpolation and numerical integration in engineering contexts.
- 3. Apply Laplace transform techniques for time domain, wave forms, periodic functions and solving differential equations.
- 4. Demonstrate the applications of electrical engineering and allied engineering science using modern ICT tools.

Module-1: Integral Calculus and its Applications

8 Hours Theory

Multiple Integrals: Evaluation of double and triple integrals, change of order of integration, changing to polar coordinates.

Beta and Gamma functions: Definitions, properties, relation between Beta and Gamma functions.

Applications: Application to mathematical quantities (Area, Surface area, Volume),

Self study: changing to polar coordinates.

Module-2: Vector Calculus and its Applications

8 Hours Theory

Vector Differentiation: Scalar and vector fields, gradient of a scalar field, directional derivatives, divergence of a vector field, solenoidal vector, curl of a vector field, irrotational vector, divergence and curl and scalar potential.

Vector Integration: Line integrals, Statement of Green's and Stokes' theorem without verification problems.

Applications: Workdone and Flux problems; **Self study:** Stokes' theorem

Module-3: Numerical Methods-1

8 Hours Theory

Solution of algebraic and transcendental equations: Regula-Falsi method and Newton-Raphson method.

Finite Differences and Interpolation: Forward and backward differences, Interpolation, Newton forward and backward interpolation formulae, Newton's divided difference interpolation formula and Numerical Integration: Trapezoidal rule, Simpson's 1/3rd rule and Simpson's 3/8th rule.

Applications: Estimating the approximate roots, extremum values, Area, volume, surface area.

Self study: Trapezoidal rule

Module-4: Numerical Methods-2

8 Hours Theory

Numerical solution of ordinary differential equations of first order and first degree: Taylor's series method, Modified Euler's method, Runge-Kutta method of fourth order and Milne's predictor corrector method.

Applications: Estimating the approximate solutions of ODE.

Self study: Adam-Bashforth predictor-corrector method

Module-5: Laplace Transform

8 Hours Theory

Laplace transform (LT): Definition and Formulae of Laplace Transform, LT of elementary functions. Properties—linearity, scaling, shifting property, differentiation in the s domain, division by t. Heaviside Unit step function.

Inverse Laplace Transforms: Definition, properties, evaluation using different methods(partial

fraction and completing square) and applications to solve ordinary differential equations.

Applications: Signals and systems, Control systems.

Self study: LT of periodic functions, square wave, saw-tooth wave, triangular wave, full and half wave rectifier.

PRACTICAL MODULE

- 1. Programming in MATLAB
- 2. Numerical Method of Solving Transcendental Equations
- 3. Numerical Method of First Order Ordinary Differential Equation
- 4. Numerical Integration
- 5. Interpolation Methods
- 6. Linear Algebra II
- 7. Laplace Transform

Demo Experiment

Advanced Data Visualization using Python and Excel

Course Outcomes	At the end of the course the student will be able to:
1BMATE201.1	Apply techniques of multiple integrals and special functions (Beta & Gamma) to compute areas, volumes, and other quantities in engineering applications.
1BMATE201.2	Analyse vector calculus problems using gradient, divergence, and curl, and apply Green's and Stokes' theorems to evaluate line and surface integrals in physical contexts.
1BMATE201.3	Apply and analyse numerical methods such as Newton-Raphson, interpolation, and numerical integration techniques to approximate solutions of algebraic, transcendental, and integral problems.
1BMATE201.4	Evaluate the performance of numerical methods (Taylor's series, Modified Euler's, Runge-Kutta, and Predictor-Corrector) for solving ordinary differential equations in engineering models.
1BMATE201.5	Formulate and solve engineering problems using Laplace transforms and inverse transforms to model and create solutions for differential equations involving real-world systems.
1BMATE201.6	Apply modern computational tools such as MATLAB to compute, analyze, and visualize problems in integral calculus, vector calculus, numerical methods, and Laplace transforms relevant to engineering applications

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Textb							
1	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	44th Ed., 2021			
2	Advanced Engineering Mathematics	E. Kreyszig	John Wiley & Sons	10th Ed., 2018.			
3	Numerical Methods for Scientific and Engineering Computation	M.K. Jain, S.R.K. Iyengar and R.K. Jain	New Age International Publishers	8thEd., 2022.			
Reference Books							
1	Higher Engineering Mathematics	B.V. Ramana	McGraw-Hill Education	11th Ed., 2017			

2	Engineering Mathematics	Srimanta Pal & Subodh C.Bhunia	Oxford University Press	3rd Ed., 2016
3	A Textbook of Engineering Mathematics	N. P. Bali and Manish Goyal	Laxmi Publications	10th Ed., 2022
4	Higher Engineering Mathematics	H. K. Dass and Er. Rajnish Verma	S. Chand Publication	3rd Ed., 2014
5	Applied Numerical Methods with Matlab for Engineers and Scientists	Steven V. Chapra and Raymond P. Canale,	McGraw-Hill	3rd Ed., 2011
6	Numerical Analysis	Richard L. Burden, Douglas J. Faires and A. M. Burden	Cengage Publishers	10th Ed.,2010
7	Introductory Methods of Numerical Analysis	S.S. Sastry	PHI Learning Private Limited	5th Ed., 2012.
8	MATLAB for Engineering Mathematics: Experiential Learning Manual.	Ramananda H. S., Shubha V. S.	Iterative International Publishers (IIP),	2023.

Additional Resources: Web links/NPTEL Courses

- VTU e-Shikshana Program (All Modules)
- VTU EDUSAT Program (All Modules)
- https://nptel.ac.in/courses/111105160 ((Advanced Calculus)
- https://nptel.ac.in/courses/127106019 (Numerical Methods for Engineers)
- https://ocw.mit.edu/courses/18-335j-introduction-to-numerical-methods-spring-2019/
- https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-

2012/pages/syllabus/

Course Articulation Matrix

Course				Pı	ogram	Outcor	nes (PC	Os)			
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	P011
1BMATE201.1	3		-	-	2	-	-	-	-	-	
1BMATE201.2	2	-	-	-	2	-		-	-	-	-
1BMATE201.3	•	3	•	-	2		-	-	-	-	-
1BMATE201.4	-	3	-	-	2		-	-	-	-	-
1BMATE201.5	-	-	2	-	2		-	-	-	-	-
1BMATE201.6	-	-	-	-	3		-	-	-	-	-

Applied Physics for Electrical and Electronics Engineering Stream						
Course Code	1BPHYE202	Semester	II			
Course Type	Integrated	CIE Marks	50			
Teaching Hours/Week (L:T:P)	3:0:2	SEE Marks	50			
Total Hours of Pedagogy	40 hours of theory and	Total Marks	100			
(Theory and Lab hours)	10-12 hours of practical sessions					
Credits	4	Exam Hours	3			
Examination type (SEE)	Descriptive					

COURSE OBJECTIVES: The objective of this course is to

- 1. Demonstrate competency and understanding of the basic concepts in Physics.
- 2. Develop problem-solving skills and implementation in technology.
- 3. Develop team spirit and experimentation skills in Physics.

Module-1 08 Hours

Quantum Physics:

Matter waves, Expression for electron wave, Heisenberg's Uncertainty Principle and its application, Non-existence of electron inside the nucleus, Principle of Complementarity, Wave Function, Time independent Schrödinger wave equation (Derivation), Physical significance of a wave function and Born Interpretation, Eigen functions and Eigen values, Particle inside one dimensional infinite potential well, Numerical Problems.

Self-Learning: Black Body Radiation.

Module-2 08 Hours

Electrical Properties of Metals and Semiconductors

Assumptions of Quantum Free Electron Theory, Density of States (Qualitative), Fermi Dirac statistics, Fermi Energy, Fermi factor, Variation of Fermi Factor with Temperature and Energy, Semiconductors: Expression for carrier concentration (Qualitative), Fermi level for intrinsic (with derivation) and extrinsic semiconductor (no derivation) Expression for electrical conductivity, Hall effect, Numerical Problems.

Self-Learning: Classical Free electron Theory, Classification of semiconductors.

Module- 3 08 Hours

Superconductivity

Zero resistance state, Persistent current, Meissner effect, Critical temperature, Critical current (Silsbee Effect) – Derivation for a cylindrical wire using ampere's law, Critical field, Formation of Cooper pairs - Mediation of phonons, , BCS Theory, Type-I and Type-II superconductors, High Tc superconductors, Formation of Vortices, Explanation for upper critical field, Josephson junction, Flux quantization, DC Squid, Superconducting Magnet, MAGLEV, Numerical Problems.

Self-Learning: Mattheisen's rule, Lossless power transmission.

Module-4 08 Hours

Photonics:

Interaction of radiation with matter – Einstein's A and B coefficients, Prerequisites for lasing actions, Types of LASER – Carbon dioxide laser, Use of attenuators for single photon sources, Optical modulators – Pockel's effect, Kerr effect, Photodetectors – Single Photon Avalanche Diode, Optical fiber- construction and mechanism Derivation of Numerical aperture, V-number, Number of modes, Types of optical fibre, losses in optical fiber, Mach-Zehnder interferometer, Numerical problems.

Self-learning: Semiconductor diode LASER.

Module-5 08 Hours

Semiconductor devices and Sensors

Direct and indirect band gap, Band gap engineering, LED, Photo Diode, Solar cell

Sensors - Introduction, Sensing mechanisms, Classification of sensors with examples, , Piezo electric Sensors, Light dependent resistor and Resistance temperature detectors, Metal Oxide

Semiconductor (MOS)their applications (qualitative). Numerical Problems.

Self-Learning: Band theory of solids.

PRACTICAL COMPONENTS

- 1. Determination of wavelength of LASER using Diffraction Grating.
- 2. Determination of acceptance angle and numerical aperture of the given Optical Fiber.
- 3. Study the Characteristics of a Photo-Diode and to determine the power responsivity / Verification of Inverse Square Law of Light
- 4. Determination of Planck's Constant using LEDs.
- 5. Black-Box Experiment (Identification of basic Electronic Components)
- 6. Resonance in LCR circuit.
- 7. Characteristics of a Bipolar Junction Transistor.
- 8. Characteristics of Zener diode

Simulation Experiments:

- 1. Energy Gap of a Semiconductor (Simulation Experiment)
- 2. STEP Interactive Physical Simulations / Data Analysis using Spread Sheets.

COURSE OUTCO	COURSE OUTCOMES: After the completion of the course, students will be able to:		
1BPHYE202.1	Apply the fundamental principles of quantum mechanics to solve problems in quantum computing and related technologies.		
1BPHYE202.2	Analyze electron transport in solids using classical and quantum models to		
	determine key electrical properties for material and device applications		
1BPHYE202.3	Evaluate the principles and key features of superconductivity and their		
	significance in advanced physical systems.		
1BPHYE202.4	Interpret the interaction of radiation with matter and the operating principles of		
	devices used in photonics applications.		
1BPHYE202.5	Demonstrate the principles, characteristics, and applications of semiconductor		
	and sensors used in electronic and photonic systems.		
1BPHYE202.6	Investigate the impact of physics-based innovations on society and industry by		
	utilizing scientific communication, analytical, and experimental skills.		

Sl.	Title of the Book	Name of the	Name of the	Edition and
No.		Author/s	Publisher	Year
Textb	ooks			
1	Engineering Physics	Satyendra Sharma and Jyotsna Sharma	Pearson	2018
2	Engineering Physics	S L Kakani, Shubra Kakani,	CBS Publishers and Dis- tributers Pvt. Ltd.	3rd Edition, 2020
3	Solid State Physics	S. O. Pillai,	New Age Internat- ional Publishers	8th Ed2018
4	Smart Materials and Structures	M. V. Gandhi and B. S. Thompson	Chapman & Hall	1992 Edition 1992
5	A Detailed Text Book of Engineering Physics	Dr. S. P. Basavaraju	Subhas Stores, Bangalore	CBCS Edition, 2018
6	Engineering Physics	R. K. Gaur and S. L. Gupta	Dhanpat Rai Publications Ltd.,	2010
7	Basic Electronics	B L Theraja	Multi-Color Edition, S Chand	2006

Refer	Reference books					
1	Concepts of Modern Physics	Beiser, A	Beiser, A McGraw-Hill Education			
2	Introduction to Quantum Mechanics	Griffiths, D. J.	Griffiths, D. J. Pearson			
3	Introduction to Superconductivity	M. Tinkham	M. Tinkham Dover Publications			
4	Superconductivity – Basics and Applications	P. K. Mishra	Ane Books	2009		
5	Lasers and Non-Linear Optics	B. B. Loud	New Age International	2011		
6	Fundamentals of Photonics	B. E. A. Saleh, M. C. Teich	Wiley	3rd Edition, 2019		
7	A Text Book of Engineering Physics	M N Avadhanulu, P G Kshirsagar, TVS Arun Murthy	S Chand & Company Ltd	11th Edition, 2022		
8	Optical Electronics	Ghatak, A., & Thyagarajan, K	Oxford University Press	2005		
9	Engineering Physics	S Mani Naidu	Pearson	14 th Impression, 2024		

Web links and Video Lectures (e-Resources):

- 1. NPTEL Quantum Mechanics I (IIT Madras): https://nptel.ac.in/courses/115106066
- 2. Physics: Introductory Quantum Mechanics (NOC): (H C Verma) https://www.youtube.com/watch?v=cgpnjAYMEOg&list=PLvyl1YgaAepKCqx3e8MJkozbVdymN7gw
- 3. Solid State Physics NPTEL (IIT Madras) https://nptel.ac.in/courses/115106127
- 4. A Brief Course on Superconductivity NPTEL IIT Guwahati (Prof. Saurabh Basu)- Playlist Introduction Video: https://www.youtube.com/watch?v=SHoGV-sezNI
- 5. Concepts in Magnetism and Superconductivity NOC (IIT Kharagpur)Series start (Lecture 1): https://digimat.in/nptel/courses/video/115105131/L01.html
- Introduction to Photonics NPTEL (IIT Madras, Prof. Balaji Srinivasan) Lecture 03 to Lecture 12 cover: Direct video link https://www.youtube.com/watch?v=7Wq83fRDHOk&list=PLyqSpQzTE6M-4CNtkROCAvLGDl6Zws22i
- 7. Semiconductor Optoelectronics NPTEL (IIT Delhi, Prof. M. R. Shenoy)Direct video link https://www.youtube.com/watch?v=N01BYteinzE&list=PLbMVogVj5nJSvhvgcBfT3e6HFFuhq2xqz
- 8. Sensors and Actuators NPTEL (IISc Bangalore, Prof. Hardik J. Pandya) Lecture 1 Introduction to Sensors, Transducers & Actuators, incl. Hall, RTDs, Thermistors https://digimat.in/nptel/courses/video/108108147/L01.html
- 9. Smart Sensors NPTEL Lecture 34 Covers various sensors including gas, pressure, MOS sensors, photodetectors like SNSPD https://www.youtube.com/watch?v=oRydUfgMdgA
- 10.Lecture 32 Superconducting Qubits (includes Charge Qubit / Cooper-Pair Box) https://www.youtube.com/watch?v=iYo8ALJ-Mls

CO-PO Mapping

		Program Outcomes (POs)									
Course Outcomes (COs)	P01	P02	P03	P04	PO5	P06	PO7	P08	P09	PO10	P011
1BPHYE202.1	3	2									
1BPHYE202.2	3	2									
1BPHYE202.3	2	2				1					
1BPHYE202.4	3	1									
1BPHYE202.5	2										1
1BPHYE202.6				2		1		3	2		1

1: Low, 2: Medium, 3: High

Elements of Electrical and Electronics Engineering					
Course Code 1BEEE203 CIE Marks 50					
Course Type	TI	SEE Marks	50		
(Theory/Practical/Integrated)	Theory	Total Marks	100		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE	3 Hours		
Total Hours	40 hours	Credits	03		

- 1. Evaluate basic electrical circuits while implementing safety measures.
- 2. Calculate single-phase AC circuit parameters using impedance, phasors, and power.
- 3. Explain and examine three-phase system features, voltages, and phase sequences.
- 4. Identify and choose electrical machines for industrial applications based on their design and functionality.
- 5. Understand the application and behavior of semiconductor devices.
- 6. Simplify Boolean expressions and design basic digital logic circuits.

Module-1 Introduction to Electrical Engineering

8 hours

Introduction: General structure of electrical power systems using single line diagram approach, concept of AC and DC. Ohm's Law and its limitations, Analysis of series, parallel and seriesparallel circuits, Power and Energy, Calculation of electrical energy consumption, Concepts of KVL and KCL.

Module-2 Single-phase AC circuits

8 hours

Generation of Single-phase sinusoidal voltage, frequency of generated voltage, average value, RMS value, form factor and peak factor of sinusoidal voltage and currents. Phasor representation of alternating quantities. Analysis of R, L, C, R-L, R-C and R-L-C Series circuits with phasor diagrams, Real power, reactive power, apparent power, and Power factor, Numerical.

Module-3 Three-phase AC circuits & Electrical Safety

8 hours

Three-phase AC circuits: Three phase sinusoidal voltage representation: waveform, equations and Phasor representation, phase sequence, power in balanced 3-phase circuits, relationship between line and phase values of balanced star and delta connections, Numerical.

Self-Study: Necessity and advantage of 3-phase system

Equipment Safety measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits. Electric shock, earthing and its types.

Self-Study: Safety precautions to avoid shock.

Module-4 Introduction to Analog Electronics

8 hours

Semiconductor Diodes: Introduction, PN Junction diode, Characteristics, Half Wave Rectification, Full Wave Rectification.

Bipolar Junction Transistors: Introduction, Common Base Characteristics, Common Emitter Characteristics, Common Collector Characteristics

Field Effect Transistor: Junction Field Effect Transistor, JFET Characteristics, MOSFETs: Enhancement MOSFETs, Depletion Enhancement MOSFET.

Self-study: Comparison between BJT and FETs, Applications of Diode, BJT and FETs.

Module-5 Introduction to Digital Electronics

8 hours

Boolean Algebra and Logic Circuits: Binary numbers, BCD numbers, Number Base Conversion, Octal & Hexa Decimal Numbers, 1s and 2s Complements, Basic definitions, Axiomatic Definition of Boolean Algebra, Basic Theorems of Boolean Algebra, Boolean Functions, Digital Logic Gates.

Course Outcomes: At the end of the course the student will be able :				
1BEEE203.1	Analyze basic electrical circuits using the concepts of KVL and KCL.			
1BEEE203.2	Analyze and solve single-phase AC circuits by applying concepts of impedance, phasors, and power to determine voltage, current, phase relationships, and power			

	factor in practical electrical systems.
1BEEE203.3	Students will describe three-phase system advantages, represent voltages and phasors, analyze balanced circuit power and phase sequence, and solve related numerical problems.
1BEEE203.4	Apply essential electrical safety practices to prevent hazards and ensure safe working environments
1BEEE203.5	Develop the basic knowledge on construction, operation and characteristics of semiconductor devices.
1BEEE203.6	Analyze and simplify Boolean functions and design basic digital logic circuits using number systems and logic gates.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
Textb	ooks					
1	Basic Electrical Engineering	D C Kulshreshtha	Mc Graw Hill Revised 1st Edition			
2	Principles of Electrical Engineering & Electronics	V.K. Mehta, Rohit Mehta	S.Chand Publications	Revised 3 rd Edition		
3	Electronic Devices and Circuits	David A Bell	Oxford	5th Edition, 2016		
4	Digital Logic and Computer Design	M. Morris Mano,	PHI Learning	2008		
Refere	ence Books					
1	Fundamentals of Electrical Engineering and Electronics	B. L. Theraja	S. Chand & Company Ltd	Reprint Edition 2013		

Additional Resources: Web links/NPTEL Courses

- https://nptel.ac.in/courses/108/105/108105112/ (Fundamentals of Electrical Engineering)
- https://nptel.ac.in/courses/122106025 (Basic Electronics)
- https://nptel.ac.in/courses/108105132 (Digital Electronics)

Course Articulation Matrix

Course		Program Outcomes (POs)											
Outcomes													2
(COs)	PO1	PO2	PO3	P04	PO5	P06	PO7	P08	P09	PO10	P01	PSO1	PSO2
1BEEE203.1	3	2	2	-	1	-	2	-	-	-	1	1	-
1BEEE203.2	3	2	1	-	-	-	-	-	-	-	2	1	-
1BEEE203.3	3	2	2	-	-	-		-	-	-	2	1	-
1BEEE203.4	3	2	2	-		-	-	-	-	-	1	1	-
1BEEE203.5	3	3	-	-	-	-	-	-	-	-	-	-	-
1BEEE203.6	3	3	1	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

	Basic Electronics		
Course Code	1BBEC203	CIE Marks	50
Course Type	Theory	SEE Marks	50
(Theory/Practical/Integrated)	Theory	Total Marks	100
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE	3 Hours
Total Hours	40 hours	Credits	03

- 1. Explain Kirchhoff's Laws and the basics of electrical circuits.
- 2. Visualize p-n junctions in a semiconductor diode and use them to perform rectification and regulation.
- 3. Explain the working of transistors like BJT, JFET and MOSFET.
- 4. Understand the concept of operational amplifiers and oscillators in the design of electronic circuits.
- 5. Understand the basics of digital electronics and their use in the design of digital circuits like gates and adders.

Module-1 Basic Concepts (8 hours)

Basic Concepts - Basic Circuit Theory, Circuit elements, Basic laws - Introduction, Ohm's laws, Nodes, Branches and loops, Kirchhoff's laws, Series resistors and voltage division, Parallel resistors and current division, Mesh Analysis. (Textbook 1: 1.1-1.6, 2.1-2.6,3.4)

Module -2 Semiconductor Diodes and Applications (8 hours)

Semiconductor diodes, Ideal versus practical, Resistance levels, Diode equivalent circuit, Load line analysis, Sinusoidal inputs - Half-wave rectification, Full- wave rectification, Clippers, Clampers, (Textbook 2: Chapter 1: 1.6 - 1.9. Chapter 2: 2.2, 2.6 - 2.9)

Self-study topics: Zener diodes (Textbook 2: Chapter 2: 2.11)

Module -3 Transistors and Applications (8 hours)

Introduction to Bipolar Junction Transistor, Transistor construction, Transistor operation, Common - Base configuration, Common-Emitter configuration, Common-Collector configuration, Introduction to DC biasing, Operating point, Voltage-Divider bias configuration (Textbook 2: Chapter 3: 3.1-3.6, Chapter 4: 4.1,4.2, 4.5)

Self-study topics: Construction and characteristics of JFETs, Enhancement-type MOSFET (Textbook 2: Chapter 6: 6.2, 6.8)

Module - 4 Op-Amp and Communication Systems (8 hours)

Op-Amp basics, Practical op-amp circuits - Inverting amplifier, Noninverting amplifier, Unity follower, Summing amplifier, Integrator, Differentiator (Textbook 2: Chapter 10:10.4,10.5) Feedback concepts, Oscillator operation (Textbook 2: Chapter 14:14.1, 14.5)

Fundamentals of Communication: Elements of communication system, communication channels and their characteristics, Introduction to modulation

(Textbook 3: Chapter 1: 1.2, 1.3, Chapter 3: 3.1)

Module-5 Boolean Algebra and Logic Circuits (8 hours)

Binary arithmetic, Logic gates, Boolean operations and expressions, Fundamental Laws of Boolean Algebra, Boolean analysis of logic circuits, Logic simplification using Boolean algebra, Half and full adders.

(Textbook 4: Chapter 2: 2.4-2.5, Chapter 3: 3.1-3.6, Chapter 4:4.1-4.5, Chapter 6:6.1)

Self-study topics: Decimal numbers, Binary numbers, Decimal-to-Binary conversion (Textbook 4: Chapter 2: 2.1-2.3)

Course Outcom	Course Outcomes: At the end of the course, the student will be able to:			
1BBEC203.1	1BBEC203.1 Apply the fundamental principles of electrical circuits for circuit analysis			
1BBEC203.2	Analyze the V-I characteristics of a PN junction diode and construct rectifier and voltage regulation circuits using suitable diodes			
1BBEC203.3	Interpret the operation and characteristics of BJT and FET			
1BBEC203.4	Demonstrate the application of operational amplifiers in mathematical operations			
1BBEC203.5	Interpret the characteristics of communication channels, and demonstrate the importance of modulation in communication			
1BBEC203.6	Design and evaluate basic digital logic circuits using Boolean algebra, logic gates			

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Editio n and Year
Textb	ooks			
1	Fundamentals of Electric Circuits	Charles K Alexander & Matthew N O Sadiku	McGraw Hill	6 th Edition, 2016
2	Electronic Devices and Circuit Theory	Robert L Boylestad & Louis Nashelsky	Pearson	11 th Edition, 2012
3	Fundamentals of Communication Systems	John G. Proakis, Masoud Saleh	Pearson	2 nd Edition, 2014
4	Digital Fundamentals	mentals Thomas L. Floyd		11 th Edition, 2018
Refere	ence Books			
1	Electronic Devices and Circuits	David A Bell	Oxford University Press	5 th Edition, 2008
2	Basic Electronics	D P Kothari and I J Nagrath	McGraw Hill	2 nd Edition, 2018
3	Basic Electronics	R. D. Sudhakar Samuel, U. B. Mahadevaswamy, V. Nattarasu	Pearson	3 rd Edition, 2017

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/117106108https://nptel.ac.in/courses/108101091

Course Articulation Matrix

Course	Program Outcomes (POs)												
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
1BBEC203.1	3	-	-	-	-	-	-	-	-	-	-	-	-
1BBEC203.2	2	2	-	-	-	-	-	-	-	-	-	-	-
1BBEC203.3	-	3	2	-	-	-	-	-	-	-	-	-	-
1BBEC203.4	-	-	2	2	-	-	-	-	-	-	-	-	-
1BBEC203.5	-	2	2	-	-	-	-	-	-	-	-	-	-
1BBEC203.6	-	-	2	2	3	-	1	1	2	-	-	-	-

INTRODUCTION TO CIVIL ENGINEERING										
Course Code	1BESC204A	CIE Marks	50							
Course Type	Theory	SEE Marks	50							
(Theory/Practical/Integrated)	Theory	Total Marks	100							
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE	3 Hours							
Total Hours	40 hours	Credits	03							

- 1. To make students learn the scope of various specializations of Civil engineering.
- 2. To make students learn the concepts of sustainable infrastructure
- 3. To develop students' ability to analyse the problems involving forces and moments with their applications.
- 4. To make students learn the concepts of Equilibrium, types of beams and supports, and Support Reactions.
- 5. To develop the student's ability to find out the centroid and its applications.

Module-1 Civil Engineering Disciplines and Building Science (8 hours)

Importance and Scope of various fields of Civil Engineering: Surveying, Structural Engineering, Geotechnical Engineering, Water Resources Engineering, Transportation Engineering, Environmental Engineering, Construction Planning, and Project Management.

Materials of Construction: Types and Uses of Bricks and Autoclaved Aerated Concrete (AAC) Blocks, Cement, Structural Steel, and Concrete.

Structural Elements of a Building: Concept of Foundation, Plinth, Lintel, Chejja, Masonry wall, Column, Beam, Slab, and Staircase.

Module-2 Sustainable and Green Infrastructure Development (8 hours)

Societal and Global Impact of Infrastructure:

Introduction to sustainable development goals, Smart city concept, clean city concept, Safe city concept. Environment: Water Supply and Sanitary systems, urban air pollution management, Solid waste management, identification of Landfill sites, urban flood control.

Module-3 Analysis of Force System (8 hours)

Concept of idealization, system of forces, principles of transmissibility, superposition and physical independence, Resolution and composition of forces, Resultant of concurrent and non-concurrent coplanar force systems, Moment and Couple of forces, Varignon's theorem: Numerical examples.

Module-4 Equilibrium and Support Reactions (8 hours)

Equilibrium of Coplanar Concurrent forces: Free body diagram, equations of equilibrium, Lami's Theorem, and Numerical examples.

Equilibrium of Coplanar Non-Concurrent forces: Types of loadings, beams and supports, Concept of Statically determinate and indeterminate structures, Numerical examples on Statically determinate beams.

Module-5 Centroid of Plane areas (8 hours)

Importance of centroid and center of gravity, Derivation of the centroid of rectangle, triangle, semicircle, and quadrant of a circle using method of integration, Numerical examples of centroid of built-up sections.

Course Outcom	Course Outcomes: At the end of the course, the student will be able to:										
1BESC204A.1	Explain the fundamental concepts of various disciplines of Civil engineering										
1BESC204A.2	Assess the societal impact of infrastructure development										
1BESC204A.3	Evaluate the sustainability aspects of the built environment through the appropriate selection of green materials and the interpretation of rating systems.										
1BESC204A.4	Apply the system of force principles to solve coplanar force systems.										

1BESC204A.5	Analyze the equilibrium of coplanar force systems.
1BESC204A.6	Locate the centroid of simple and composite plane areas.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textb	ooks			
1	Basic Civil Engineering and Engineering Mechanics,	Bansal R. K., Rakesh Ranjan Beohar and Ahmad Ali Khan,	Laxmi Publications	3rd edition, 2015
2	Building Construction	Rangwala	Charotar Publishing House Pvt. Ltd	33rd Edition, 2016
3	Elements of Civil Engineering and Engineering Mechanics	Kolhapure B K,	ЕВРВ	8th Edition 2014
4	Elements of Civil Engineering and Engineering Mechanics	H.J.Sawant and S.P.Nitsure	Technical publications	2nd Edition, 2012
5	Elements of Civil Engineering and Engineering Mechanics	M N Sheshaprakash and Ganesh Mogaveer B	PHI Learning Private Limited	3rd Edition, 2014
Refer	ence Books			
1	Engineering Mechanics	Bhavikatti S S,	New Age International	7th Edition, 2019
2	Engineering Mechanics	Timoshenko S, Young D. H., Rao J. V.,	Pearson Press	5th Edition, 2017
3	Engineering Mechanics: Principles of Statics and Dynamics	R. C. Hibbler	Pearson	14th Edition, 2016
4	Mechanics for Engineers, Statics and Dynamics	F. P. Beer and E. R. Johnston	McGraw Hill	12th Edition, 2019
5	Engineering Mechanics	Irving H. Shames	Prentice Hall	4th Edition, 2005
6	Engineering Mechanics: Statics	J. L. Meriam. L. and G. Kraige.	Willey India	9th Edition, 2018

Additional Resources: Web links

 $\underline{https://www.youtube.com/watch?v=nGfVTNfNwnk\&list=PLOSWwFV98rfKXq2KBphJz95rao7q8}\\ \underline{PpwT}$

https://www.youtube.com/watch?v=nkg7VNW9UCc&list=PLOSWwFV98rfKXq2KBphJz95rao7q8PpwT&i ndex=2

https://www.youtube.com/watch?v=3YBXteL-qY4

 $\frac{https://www.youtube.com/watch?v=z95UW4wwzSc\&list=PLOSWwFV98rfKXq\ 2KBphJz95r}{ao7q8PpwT\&index=10}$

https://www.youtube.com/watch?v=lheoBL2QaqU&list=PLOSWwFV98rfKXq2 KBphJz95rao

7q8PpwT&index=7

https://www.youtube.com/watch?v=atoP5_DeTPE

https://www.youtube.com/watch?v=ksmsp9OzAsI

https://www.youtube.com/watch?v=x1ef048b3CE

 $\underline{https://www.youtube.com/watch?v=l_Nck-X49qc}$

https://play.google.com/store/apps/details?id=appinventor.ai_jgarc322.Resul tant_Force

 $\underline{https://www.youtube.com/watch?v=RIBeeW1DSZg}$

https://www.youtube.com/watch?v=R8wKV0UQtlo

https://www.youtube.com/watch?v=0RZHHgL8m_A

https://www.youtube.com/watch?v=Bls5KnQOWkY

Activity-Based Learning (Suggested Activities in Class)/ Practical Based learning •

 $\underline{https://www.youtube.com/watch?v=\!Zrc_gB1YYS0}$

https://www.youtube.com/watch?v=Hn_iozUo9m4

Course Articulation Matrix

Course					Pro	ogram (Outcor	nes (Po	Os)				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
1BESC204A.1	3												
1BESC204A.2	3					2		2	2				
1BESC204A.3	3	3				2							
1BESC204A.4	3	3											
1BESC204A.5	3	3											
1BESC204A.6	3	3											

Introduction to Mechanical Engineering										
Course Code	1BESC204B	CIE Marks	50							
Course Type	Theory	SEE Marks	50							
(Theory/Practical/Integrated)	Theory	Total Marks	100							
Teaching Hours/Week (L:T:P)	3:0:0	SEE	3 Hours							
Total Hours	40 hours	Credits	03							

- 1. Acquire a fundamental understanding role of Mechanical Engineering in NTM.
- 2. Acquire a basic knowledge of renewable energy resources.
- 3. Acquire knowledge of various engineering materials and metal joining techniques.
- 4. Acquire knowledge of IC engines, EVs & Hybrid vehicles.
- 5. Acquire essential experience on machine tools and power transmission system
- 6. Acquire knowledge of basic concepts on CNC, mechatronics and robotics.

Module-1 (8 hours)

Energy Sources and Power Plants: Introduction and application of energy sources, Construction and working of Hydel power plant, Thermal power plant, nuclear power plant, Solar power plant, Tidal power plant, Wind power plant and concept of bio-fuels.

Non-Traditional Machining Processes: Ultrasonic Machining (USM), Electrochemical Machining (ECM), Electrical Discharge Machining (EDM), Electron Beam Machining (EBM) and Laser Beam Machining (LBM)

Self-Study Component: Study additional renewable energy technologies and their impact on future power generation.

Module-2 (8 hours)

Engineering Materials: Types, properties and applications of ferrous and non-ferrous metals, ceramics, composites, smart materials and shape memory alloys.

Metal Joining Processes: Soldering, Brazing and Welding: Definition & Classification of soldering, brazing, and welding. Brief description of arc welding, Oxy-acetylene gas welding and types of flames.

Self-Study Component: Explore advanced materials and their role in modern manufacturing applications.

Module-3 (8 hours)

Fundamentals of IC Engines: Components and working principle of 4-stroke petrol and diesel engines, Application of IC Engines.

Insight into future mobility technology: Brief description & Components of Electric and Hybrid Vehicles, Advantages and disadvantages of EVs and Hybrid Vehicles.

Self-Study Component: Compare conventional IC engines with electric vehicle powertrains through case studies.

Module-4 (8 hours)

Machine Tools and Operations: Working principle of lathe, lathe operations: turning, facing, knurling, working principle of drilling, drilling operations: drilling, boring, reaming, working principle of milling machine, milling operations: slot milling and plane milling (Sketches of operations of lathe, drilling and milling must be drawn for explanation in the exam)

Gear Drives: Types - spur, helical, bevel, worm and rack and pinion, velocity ratio, Gear Trains and their application: simple and compound Gear Trains

Self-Study Component: Study applications of different gear trains in real-life mechanical systems.

Module-5 (8 hours)

Introduction to Modern Manufacturing Systems: Introduction, components of CNC, advantages and applications of CNC, 3D Printing.

Automation in industry: Fixed, programable & flexible automation and basic elements with block diagrams and concept of open-loop and closed-loop mechatronic system.

Introduction to Robotics: Robot configurations, applications, advantages and disadvantages. **Self-Study Component:** Explore recent advancements in CNC, automation, and robotics used in smart manufacturing industries.

Course Outcom	Course Outcomes: At the end of the course the student will be able:								
1BESC204B .1	Classify energy sources, power plants, and non-traditional machining processes								
IBLSC204B .1	with their applications.								
1BESC204B .2	Analyze the suitability of non-traditional machining processes (USM, ECM, EDM,								
1DESC204D .2	EBM, LBM) for engineering applications.								
1BESC204B .3	Select engineering materials and compare metal joining processes for specific								
IDESC204D .5	applications.								
1BESC204B .4	Compare IC engines with electric and hybrid vehicles in terms of components,								
1DL3C204D .4	performance, and limitations.								
1BESC204B .5	Demonstrate basic machine tools and analyze the applications of gear drives and								
IDESC204D .5	gear trains.								
1BESC204B .6	Evaluate emerging trends in modern manufacturing systems such as CNC, 3D								
1DESC204D .0	printing, automation, and robotics.								

Sl.	Title of the Book	Name of the Author/s	Name of the	Edition and	
No.			Publisher	Year	
Texth	oooks				
1	Elements of Engineering Mechanical	TT D C 11 11 C 11 D 11 I			
		1		2018	
	Text Book of Elements of	0.00	MEDTECH (Scientific	5 th Edition	
2	Mechanical Engineering	S Trymbaka Murthy	International Pvt Ltd)	2019	
	Elements of Engineering		Media Promoters,	Vol 1 & 2	
3	Mechanical	Hajra Choudhury	New	2001	
			Delhi	2001	
Refer	ence Books				
	Elements of Engineering		Thomson Press (India)	8 th Edition	
1	Mechanical	Dr. A. S. Ravindra	Ltd	2011	
2	Introduction to Robotics:	Cuoia I I	Pearson International	3 rd Edition	
	Mechanics and Control	Craig J. J	Education	2005	
	Mechatronics-Principles	Nitaigour Premchand		1 st Edition	
3	Concepts and Applications	Mahalik	Tata McGraw Hill	2003	
	Additive Manufacturing				
	Technologies: Rapid	Ian Gibson, David W.	Carriacen	2 nd Edition	
_	Prototyping to Direct	Rosen, Brent Stucker	Springer	2015	
4	Digital Manufacturing	1100011, Bront Stacker			
	Modern Electric, Hybrid	MehrdadEhsani, Yimin		1 st Edition	
	Electric and FuelCell	Gao, Sebastien E. Gay	CRC Press LLC		
5	Vehicles.	and Li Emadi,		2005	

6	Modern Maching Process	1	McGraw Hill Education India Pvt. Ltd.	2000
---	------------------------	---	--	------

Weblinks/Video Lectures/MOOCs

1. **MOOC:** https://nptel.ac.in/courses/112/105/112105123/

2. **MOOC:** https://nptel.ac.in/courses/112/107/112107208/

3. **MOOC:** https://nptel.ac.in/courses/112/103/112103262/

4. **NPTEL:** https://www.youtube.com/watch?v=GQHCnWl2U6I

Course Articulation Matrix

Course Outcomes (CO)				F	rogram	Outco	mes (P	O)			
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11
1BESC204B .1	3	1	1	-	-	-	-	-	-	-	-
1BESC204B .2	-	3	-	-	-	-	-	-	-	-	-
1BESC204B .3	-	-	2	-	-	-	-	-	-	-	-
1BESC204B .4	-	-	-	2	-	-	-	-	-	-	-
1BESC204B .5	-	-	-	-	-	-	-	-	-	-	-
1BESC204B .6	-	1	-	-	-	-	-	-	-	-	-

Introduction to Electrical Engineering					
Course Code 1BESC204C CIE Marks 50					
Course Type	Theory	SEE Marks	50		
(Theory/Practical/Integrated)	Theory	Total Marks	100		
Teaching Hours/Week (L:T:P)	(3:0:0)	SEE	3 Hours		
Total Hours	40 hours	Credits	03		

- 1. Illustrate the behavior of circuit elements in single-phase circuits.
- 2. Comprehend the importance of three phase AC circuits and connections.
- 3. Explain the construction and operation of transformers, DC generators and motors and induction motors.
- 4. Discuss concepts of circuit protecting devices and earthing.
- 5. Explain electric power generation, electricity billing, equipment and personal safety measures

Module-1 Power Generation and DC circuits

8 hours

Introduction: Conventional and non-conventional energy resources; Advantages and limitations, general structure of electrical power systems using single line diagram approach.

Power Generation: Hydel, nuclear, solar & wind power generation (Block Diagram approach).

DC Circuits: Ohm's Law and its limitations, Concepts of KVL and KCL (maximum two branches), Power and Energy. (Numericals covering all the concepts).

Module-2 AC circuits 8 hours

AC Fundamentals: Definitions of waveform, time period, frequency, amplitude, phase, phase difference, average value, RMS value, form factor, peak factor. Voltage and current relationship with phasor diagrams in R, L and C circuits (No power equation derivations). Concept of Impedance in R-L, R-C, R-L-C Series circuits. Active power, reactive power and apparent power. Concept of power factor. (Numericals covering all the concepts).

Three Phase Circuits: Generation of Three phase AC quantity, star and delta connection, relationship between line and phase quantities (Excluding proof & Numericals).

Self-Study: Advantages & Limitation of three phase system over single phase system

Module-3 DC Machines & Synchronous Machines

8 hours

8 hours

DC Generator: Principle of operation, constructional details, types of generators (DC Shunt &Series) [Excluding Numericals]

DC Motor: Principle of operation, types of motors [Excluding Numericals]

Synchronous Generators: Principle of operation, types and construction. [Excluding Numericals] **Self-Study:** Advantages and applications of DC Generators/Motors.

Module-4 AC Machines

Transformers: Necessity of transformer, principle of operation, Types and construction of single phase transformers, EMF equation, losses. (Numericals on EMF equations & Transformation ratio) **Three-phase induction Motors**: Concept of rotating magnetic field (excluding the derivation), Principle of operation, constructional features of motor, types – squirrel cage and wound rotor. Slip and its significance. (Numericals on Slip).

Module-5 Electrical Safety

8 hours

Electricity Bill: Power rating of household appliances including air conditioners, PCs, laptops, printers. Definition of "unit" used for consumption of electrical energy, two-part electricity tariff, **Self-Study:** Case Study on calculation of electricity bill for domestic consumers.

Equipment Safety measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits.

Personal safety measures: Electric shock, earthing and its types, safety precautions to avoid shock.

Course Outcomes: At the end of the course the student will be able to:				
1BESC204C.1	Describe the concept of electric power generation using various energy resources.			
1BESC204C.2	Apply basic laws of electrical engineering to analyze the DC circuits.			
1BESC204C.3	Solve numericals on single phase and three phase AC circuits			
1BESC204C.4	Discuss the construction and operation of DC electrical machines			
1BESC204C.5	Discuss the construction and operation of AC electrical machines.			
1BESC204C.6	Illustrate the use of circuit protective devices and earthing.			

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
Textb	ooks						
1	Basic Electrical	D C Kulshreshtha.	Tata McGraw	1 st Edition			
1	Engineering.		Hill.	2019.			
2	A text book of Electrical	B.L. Theraja.	S Chand and	Reprint			
	Technology.		Company	edition 2014.			
Refer	ence Books						
1	Basic Electrical	D.P Kothari and I. J.	Tata McGraw Hill	4 th Edition,			
1	Engineering,	Nagrath,		2019.			
2	Principles of Electrical	V. K. Mehta, Rohit	S Chand and	2 nd Edition,			
2	Engineering & Electronics	Mehta,	Company	2015.			
Addit	Additional Resources: Web links/NPTEL Courses						
	• https://nptel.ac.in/courses/10	8105112 (Fundamentals of Ele	ctrical Engineering)				

Course Articulation Matrix

Course Outcomes				P	rogram	Outcom	nes (POs	s)			
(COs)	PO1	P02	P03	P04	PO5	P06	PO7	P08	P09	PO10	P011
1BESC204C.1	3	-	-	-	-	-	-	-	-	-	-
1BESC204C.2	3	3	-	-	1	-	-	-	-	-	-
1BESC204C.3	3	2	-	-	1	-	-	-	-	-	-
1BESC204C.4	3	-	-	-	-	-	-	-	-	-	-
1BESC204C.5	3	1	-	-	-	-	-	-	-	-	-
1BESC204C.6	3	-	-	-	-	-	-	-	-	-	-

1: Low 2: Medium 3: High

Introduction to Electronics and Communication Engineering					
Course Code 1BESC204D CIE Marks 50					
Course Type	Theory	SEE Marks	50		
(Theory/Practical/Integrated)	Theory	Total Marks	100		
Teaching Hours/Week (L:T:P)	3:0:0	SEE	3 Hours		
Total Hours	40 Hrs	Credits	03		

Course Learning Objectives: The objective of the course is to

- Develop a conceptual and analytical foundation in semiconductor devices, particularly rectifier and voltage regulation circuits.
- Gain the ability to interpret oscillator behavior and operational amplifier configurations in analog signal processing.
- Build computational skills in handling various number systems relevant to digital logic.
- Acquire the skills to design and analyze basic logic circuits using fundamental digital components.
- Familiarize with the evolution, architecture, and applications of embedded systems in modern electronics.
- Introduce the basic principles of communication systems with emphasis on analog modulation methods.

Module-1 Semiconductor Diodes and Power Supply Circuits (8 hours)

N-type and P-type Semiconductors, The PN junction, Forward and Reverse Biased Junction, Characteristics and Parameters, Diode approximations, Half-Wave Rectification (HWR), Full-Wave Rectification (FWR), Capacitor Filter Circuits (full wave & half wave), Zener diode Voltage Regulators with and without load.

Activities: Virtual lab experiments on rectifiers

Self-Learning Topics: Full wave capacitor filter circuits, Zener diode voltage regulator without load.

Textbook 1: 1.4, 1.5, 1.6, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.6

Module-2 Oscillators and Applications of Operational Amplifiers (8 hours)

Oscillators – Barkhausen criterion, sinusoidal and non-sinusoidal oscillators, Crystal controlled oscillators (Only concepts, working, and waveforms. No mathematical derivations)

Textbook 2: 7.7, 7.13.

Operational Amplifiers (Op-Amp) – Introduction, Op-Amp symbol, characteristics of ideal and practical Op-Amps, Basic Op-Amp circuits: Inverting and Non-inverting amplifiers, Linear applications of Op-Amp: Voltage follower, Summer, Subtractor, Integrator, Differentiator

Activities: Multisim-based experiments on Op-Amp as Inverting and Non-inverting amplifiers, Voltage follower, Summer, Subtractor, Integrator and Differentiator.

Self-Learning Topics: Non Inverting Amplifier, Voltage follower.

Textbook 2: 6.1 and 6.2.

Module-3 Digital Logic Fundamentals and Combinational Circuits (8 hours)

Boolean Algebra and Logic Circuits: Introduction, Number systems & Conversion: Decimal, Binary, Hexadecimal, Octal, Complement of Binary numbers, Boolean algebra theorems, Logic gates.

Combinational Circuits: Adders: Half adder and Full adder.

Activities: Demonstrate the working of basic gates and De Morgan's law using trainer kits.

Self-Learning Topics: Conversion: Octal to Hexadecimal and vice versa.

Textbook 2: 10.1, 10.2, 10.4, 10.5.1, 10.5.2

Module-4 Fundamentals of Embedded Systems and Architectures (8 hours)

Embedded Systems – Definition, Embedded Systems Versus General Computing Systems, Classification of Embedded Systems, Major application areas of Embedded Systems, Purpose of Embedded System, A typical Embedded System, Core of the Embedded System, Microprocessor versus Microcontroller, RISC versus CISC, Harvard versus Von-Neumann architecture.

Activities: LED, serial monitor, ultrasonic sensor using Arduino.

Self-Learning Topics: Major application areas of Embedded Systems

Textbook 3: 1.1, 1.2, 1.4, 1.5, 1.6, 2.1, 2.1.1

Module-5 Introduction to Communication Systems (8 hours)

Introduction, Elements of communication systems, Types of modulation (only concepts): AM and FM, Difference between AM and FM, Modulation, Multiplexing, Transmission lines, Concept of Radio wave and antennas, Satellite Communication, Principle of operation of mobile phone, Optical fiber communication.

Activities: Demonstrate the working of AM and FM.

Self-Learning Topics: Principle of operation of mobile phone.

Textbook 2: 18.1, 18.2, 18.11, 18.12, 18.13, 18.14, 18.15, 18.17, 18.18, 18.22

Course Outcom	Course Outcomes: At the end of the course the student will be able to:				
1BESC204D.1	Develop a conceptual and analytical foundation in semiconductor devices, particularly rectifier and voltage regulation circuits.				
1BESC204D.2	Gain the ability to interpret oscillator behavior and operational amplifier configurations in analog signal processing.				
1BESC204D.3	Build computational skills in handling various number systems relevant to digital logic.				
1BESC204D.4	Acquire the skills to design and analyze basic logic circuits using fundamental digital components.				
1BESC204D.5	Familiarize with the evolution, architecture, and applications of embedded systems in modern electronics.				
1BESC204D.6	Introduce the basic principles of communication systems with emphasis on analog modulation methods				

Sl.No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Textbo	oks			
1	Electronic Devices and Circuits	David A Bell	Oxford University Press	4 th Edition, 2008.
2	Basic Electronics	D P Kothari and I J Nagrath	McGraw Hill Education (India)	2 nd Edition, 2018.
3	Introduction to Embedded Systems	Shibhu KV	McGraw Hill Education (India)	2 nd Edition, 2017.
Referen	ce Books			
1	Electronic Devices	Thomas L. Floyd	Pearson Education	9 th Edition, 2012.
2	Electronic Devices and Circuit Theory	R Boylestad, Nashelskey	Pearson Education	11 th Edition, 2013.

Web links and Video Lectures (e-Resources):

- 1. Basic Electronics Virtual Lab-IIT Kharagpur: http://vlabs.iitkgp.ac.in/be/
- 2. Digital Electronics https://www.youtube.com/watch?v=2xXErGeeb_Q 3.
- 3. https://www.youtube.com/watch?v=Yryi1bbmUjU.

Course Articulation Matrix

Course		Program Outcomes (POs)									
Outcomes (COs)	P01	P02	P03	P04	P05	PO6	PO7	PO8	P09	PO10	P011
1BESC204D.1	2	-	-	-	3	-	-	-	1	-	-
1BESC204D.2	1	-	-	-	3	-	-	-	1	-	-
1BESC204D.3	1	2	-	_	-	-	-	-	-	-	-
1BESC204D.4	1	2	-	-	-	-	-	-	-	-	-
1BESC204D.5	1	-	-	-	-	-	-	-	-	-	-
1BESC204D.6	1	-	-	-	-	-	-	-	-	-	-

Essentials of Information Technology						
Course Code 1BESC204E CIE Marks 50						
Course Type	Theory	SEE Marks	50			
(Theory/Practical/Integrated)	Theory	Total Marks	100			
Teaching Hours/Week (L: T:P)	(3:0:0)	SEE	3 Hours			
Total Hours	40 hours	Credits	03			

- Identify different information representation and manipulation schemes.
- Apply operating system principles and algorithmic techniques.
- Utilize knowledge of networking and cybersecurity essentials.
- Analyse ethical and legal issues in information technology.
- Explore software engineering principles and database systems.
- Design simple web applications and explore benefits and risks of social media.

Module-1 Data Storage and Manipulation (8 hours)

Data Storage: Bits and Their Storage, Main Memory, Mass Storage, Representing Information as Bit Patterns, The Binary System, Storing Integers, Storing Fractions.

Data Manipulation: Computer Architecture, Machine Language, Program Execution, Arithmetic/Logic Instructions, Communicating with Other Devices, Programming Data Manipulation. **Textbook 1: Chapter 1: 1.1-1.7, Chapter 2: 2.1-2.6**

Module-2 Operating Systems and Algorithms (8 hours)

Operating Systems: The History of Operating Systems, Operating System Architecture, Coordinating the Machine's Activities, Handling Competition Among Processes, Security.

Algorithms: The Concept of an Algorithm, Algorithm Representation, Algorithm Discovery, Iterative Structures, Recursive Structures. **Textbook 1: Chapter 3, Chapter 5: 5.1-5.5**

Module-3 Networking and Cyber Security (8 hours)

Networking and the Internet: Network Fundamentals, The Internet, The World Wide Web, Internet Protocols, Security.

Cybersecurity: Overview—What is Cybersecurity? Brief History of Cybersecurity Events, The Basic Information Security Model, Cyber Hygiene, Teams in Cybersecurity.

Ethical Issues in Information Technology: Overview, Ownership Rules, Ethics and Online Content. **Textbook 1: Chapter 4 Textbook 2: Chapter 16 and 17**

Module-4 Software Engineering and Database Systems (8 hours)

Software Engineering: The Software Engineering Discipline, The Software Life Cycle, Software Engineering Methodologies, Modularity, Tools of the Trade.

Database Systems: Database Fundamentals, The Relational Model.

Textbook 1: Chapter 7:7.1-7.5, Chapter 9: 9.1-9.2

Module-5 Introduction to HTML and Social Media (8 hours)

Introduction to HTML and Website Development: What is HTML?, Cascading Style Sheets (CSS), Website Design and Storyboarding, Structure of a Website.

Social Media: Benefits of Social Media, Risks of Social Media. Textbook 2: Chapter 12 and 18

Self-study (**for Learning Activity, Not for SEE**): **i.** Word Processors. ii. Introduction to Spreadsheets and iii. Introduction to Presentation Applications.

Course Outcomes: At the end of the course the student will be able to:

1BESC204E.1	Apply the fundamentals of data storage, representation, and manipulation in computer systems, including binary systems, memory, and program execution.
1BESC204E.2	Identify the architecture of operating systems and develop algorithmic solutions using iterative and recursive structures.

1BESC204E.3	Apply networking concepts and cybersecurity practices in everyday tasks.
1BESC204E.4	Apply software engineering principles and database fundamentals to design efficient software systems.
1BESC204E.5	Develop simple web pages using HTML and CSS.
1BESC204E.6	Analyse the benefits and risks of social media.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textb	ooks				
1	Computer Science an overview	J. Glenn Brookshear and Dennis Brylow	Pearson Education Limited	12 th Edition 2017	
2	Fundamentals of Information Technology	Roy, Shambhavi; Daniel, Clinton; and Agrawal, Manis	Digital Commons at The University of South Florida	1 st Edition 2023	
Refer	ence Books				
1	Introduction to Information Technology	V. Rajaraman	PHI Learning	3 rd Edition 2018	
2	Information Technology in Theory	Pelin Aksoy	Cengage	1st Edition 2012	

Web links and Video Lectures (e-Resources):

- https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01281821790293196830622_shared/overview (Major Attacks on Networks)
- https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01436050621856153674/over view(Software Development Life Cycle)
- https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013382690411003904735_sh ared/overview (Computer Networks)
- https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_013382690411003904735_sh ared/overview (Software Engineering)

Course Articulation Matrix

Course	Program Outcomes (POs)										
Outcomes (COs)	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011
1BESC204E.1	3										
1BESC204E.2		3	2								
1BESC204E.3	3						2				
1BESC204E.4	3	2	2								
1BESC204E.5	2		3			2					
1BESC204E.6		3					2				

Introduction to AI and Applications							
Course Code	1BETC205	CIE Marks	50				
Course Type	Theory	SEE Marks	50				
(Theory/Practical/Integrated)	Theory	Total Marks	100				
Teaching Hours/Week (L: T:P)	(3:0:0)	SEE	3 Hours				
Total Hours	40 hours	Credits	03				

- 1. Understand the basic concepts of Artificial Intelligence.
- 2. Gain foundational knowledge of Machine Learning techniques.
- 3. Familiarize students with emerging trends in AI.
- 4. Equip students with prompt engineering techniques and explore diverse real-world applications of AI.

Module-1: Introduction to AI

(8 hours)

Introduction to Artificial Intelligence (AI): Artificial Intelligence, How Does AI Work? Advantages and Disadvantages of Artificial Intelligence, History of Artificial Intelligence, Types of Artificial Intelligence, Weak AI, Strong AI, Reactive Machines, Limited Memory, Theory of Mind, Self-Awareness, Is Artificial Intelligence Same as Augmented Intelligence and Cognitive Computing, Machine Learning and Deep Learning.

Machine Intelligence: Defining Intelligence, Components of Intelligence, Differences Between Human and Machine Intelligence, Agent and Environment, Search.

Textbook 1: Chapter 1 (1.1-1.5), Chapter 3 (3.1-3.5)

Module-2: Introduction to Machine Learning

(8 hours)

Machine Learning: Techniques in AI, Machine Learning Model, Regression Analysis in Machine Learning, Classification Techniques, Clustering Techniques.

Textbook 1: Chapter 2 (2.1-2.4.1, 2.5-2.5.6)

Module-3: Trends in AI

(8 hours)

Trends in AI: AI and Ethical Concerns, AI as a Service (AIaaS), Recent trends in AI.

Where AI is heading Today: Expert System, Internet of Things, Artificial Intelligence of Things (AIoT).

Textbook 1: Chapter 8 (8.1, 8.2, 8.4), Chapter 9 (9.1- 9.3)

Module-4: Prompt Engineering

(8 hours)

Introduction to Prompt Engineering: LLMs Are Magic, Language Models: How Did We Get Here? Prompt Engineering.

Prompt content: Sources of content, Static Content, Dynamic Content.

Textbook 2: Chapter 1, Chapter 5

Module-5: Applications of AI

(8 hours)

Applications of AI, Robotics-an Application of AI, Drones Using AI, No Code AI, Low Code AI

Industrial Applications of AI: Application of AI in Healthcare, Application of AI in Finance, Application of AI in Retail, Application of AI in Agriculture, Application of AI in Education, Application of AI in Transportation.

Textbook 1: Chapter 1 (1.6, 1.7, 1.8, 1.10, 1.11), Textbook 3: Chapter 3 (3.1-3.6)

Self-Learning Topics:

Prompts for Effective Writing, Prompts for Multimedia Content Retrieval (graphs, images, audio, etc.), AI in Experimentation and Multi-disciplinary research.

Course Outcomes: At the end of the course the student will be able:

1BETC205.1	Understand the fundamental concepts, scope, and types of Artificial Intelligence (AI) and Machine Intelligence.
1BETC205.2	Illustrate and compare basic Machine Learning methods for regression,

	classification, and clustering.
1BETC205.3	Identify and analyze recent trends and advancements in AI and Machine Learning.
1BETC205.4	Apply prompt engineering techniques to effectively interact with generative AI tools.
1BETC205.5	Explain diverse industrial applications of AI across multiple domains.
1BETC205.6	Apply AI knowledge and techniques to design solutions for real-time applications.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	books			
1	Artificial Intelligence: Beyond Classical AI	Reema Thareja	Pearson Education	1 st Edition, 2023
2	Prompt Engineering for LLMs: The Art and Science of Building Large Language Model–Based Applications.	John Berryman and Albert Ziegler	O'Reilly	1 st Edition, 2023
3	AI for Everyone – A Beginner's Handbook for Artificial Intelligence	Saptarsi Goswami, Amit Kumar Das and Amlan Chakrabarti	Pearson	1 st Edition, 2024
Refe	rence Books			
1	Artificial Intelligence: A Modern Approach	Stuart Russell and Peter Norvig	Pearson Education	4 th Edition, 2023
2	Artificial Intelligence	Elaine Rich, Kevin Knight, and Shivashankar B. Nair	McGraw Hill Education	3 rd Edition, 2017

Additional Resources: Web links/NPTEL Courses

- Elements of AI https://www.elementsofai.com
- CS50's Introduction to Artificial Intelligence with Python -Harvard https://cs50.harvard.edu/ai/
- Google Machine Learning Crash Course https://developers.google.com/machine-learning/crash-course
- Learn Prompting (Open-Source Guide)- https://learnprompting.org
- Google AI Learn with Google AI https://ai.google/education/
- Coursera Machine Learning by Andrew Ng (Stanford University) https://www.coursera.org/learn/machine-learning
- OpenAI Prompt Engineering Guide (for ChatGPT)
 https://platform.openai.com/docs/guides/gpt-best-practices
- Prompt Engineering for Developers DeepLearning.AI + OpenAI https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
- Ethics in AI Google Responsible AI Practices https://ai.google/responsibilities/responsible-ai-practices/
- Google Teachable Machine (Train AI models visually without code) https://teachablemachine.withgoogle.com

Course Articulation Matrix

Course		Program Outcomes (POs)										
Outcomes						,,				0	1	
(COs)	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	
1BETC205.1	1	2	-	-	-	-	-	-	-	-		
1BETC205.2	1	-	3	-	-	-	-	-	-	-	-	
1BETC205.3	-	-	-	-	-	-	2	-	-	-	-	
1BETC205.4	-	-	3	2	-	-	-	-	-	-	-	
1BETC205.5	-	1	-	-	2	-	-	-	-	-	-	
1BETC205.6	-	-	3	2	-	2	-	-	-	-	2	

Elements of Electrical and Electronics Lab											
Course Code	1BEEE106L	CIE Marks	50								
Course Type	Dungting	SEE Marks	50								
(Theory/Practical/Integrated)	Practical	Total Marks	100								
Teaching Hours/Week (L:T:P)	(0:0:2)	SEE	3 Hours								
Total Hours	24 hours	Credits	01								

- 1. Verify and apply KCL and KVL in DC circuits.
- 2. Determine phase and line quantities in three-phase star and delta loads.
- 3. Implement two-way and three-way lamp control circuits and verify truth tables.
- 4. Study fuse characteristics and operation of miniature circuit breakers.
- 5. Examine diode V-I characteristics, rectifier operations, and verify logic gate truth tables.

List of Experiments

- 1. Verification of KCL and KVL for DC circuits.
- 2. Measurement of current, power and power factor of incandescent, fluorescent and LED lamp.
- 3. Measurement of resistance and inductance of a Choke coil using three voltmeter method.
- 4. Determination of phase and line quantities in three phase star and delta connected loads.
- 5. Two way and three-way control of lamp and formation of truth table.
- 6. Fuse characteristics and demonstration of Miniature Circuit breakers.
- 7. V I Characteristics of Si & Ge Diodes.
- 8. Characteristics of bipolar transistors.
- 9. Operation of Half Wave and Full Wave Rectifier without Filter.
- 10. Verification of Logic Gates.

Course Outcomes: At the end of the course the student will be able :

1BEEE206L.1	Apply fundamental electrical laws to analyze and verify the behavior of DC circuits.
1BEEE206L.2	Understand and determine the phase and line voltages and currents in three-phase systems.
1BEEE206L.3	Design and implement two-way and three-way lamp controls, and construct corresponding truth tables to interpret logical operations practically.
1BEEE206L.4	Determine and analyze the electrical characteristics of various lighting systems and inductive components by conducting experiments on lamps and choke coils.
1BEEE206L.5	Examine the protective devices in electrical circuits by investigating fuse characteristics and the operational principles of MCBs.
1BEEE206L.6	Investigate and verify the characteristics of semiconductor devices to analyze rectifier operation and verify the truth tables of logic gates to understand digital circuit fundamentals.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
Textb	ooks				
1	Basic Electrical	D C Kulshreshtha	Mc Graw Hill	Revised 1st	
1	Engineering			Edition	
2	Principles of Electrical	V.K. Mehta, Rohit	S.Chand	Revised 3 rd	
2	Engineering & Electronics	Mehta	Publications	Edition	
3	Electronic Devices and	David A Bell	Oxford	5th Edition,	
3	Circuits			2016	

4	Digital Logic and Computer Design	M. Morris Mano,	PHI Learning	2008					
Reference Books									
	Fundamentals of Electrical	B. L. Theraja	S. Chand &	Reprint					
1	Engineering and		Company Ltd	Edition 2013					
	Electronics								

Additional Resources: Web links/NPTEL Courses

- https://nptel.ac.in/courses/108/105/108105112/ (Fundamentals of Electrical Engineering)
- https://nptel.ac.in/courses/122106025 (Basic Electronics)
- https://nptel.ac.in/courses/108105132 (Digital Electronics)

Course Articulation Matrix

Course					Pro	ogram	Outcor	nes (Po	Os)				
Outcomes										0	1	1	2
(COs)	PO1	PO2	РОЗ	PO4	PO5	P06	PO7	PO8	P09	PO10	PO1	PSO1	PSO2
1BEEE206L.1	3	3	3	1	-	2	-	2	2	-	-	2	-
1BEEE206L.2	3	2	1	-	-	2	-	2	2	-	-	2	-
1BEEE206L.3	3	2	2	-	-	2		2	2	-	-	2	-
1BEEE206L.4	3	2	2	-		2	-	2	2	-	-	2	-
1BEEE206L.5	3	2	2	-	-	3	-	2	2	-	-	2	-
1BEEE206L.6	3	3	1	-	-	2	_	2	2	_	_	2	-

Basic Electronics Lab											
Course Code	BBEC206L	CIE Marks	50								
Course Type	Practical	SEE Marks	50								
		Total Marks	100								
Teaching Hours/Week (L:T:P)	0:0:2	SEE	3 Hours								
Total Hours	24 Hours	Credits	01								

Course Learning Objectives: This Course will enable students to

- Understand and apply basic circuit laws and theorems to analyze resistive and diodebased circuits.
- Analyze and verify the behavior of semiconductor devices, such as PN junctions and Zener diodes, under various biasing conditions and rectifier configurations.
- Design, construct, and test basic analog and digital circuits using discrete components and verify the logical behavior of gates and Boolean expressions.
- Simulate and analyze analog and digital circuits using MULTISIM to validate theoretical principles.

Part A

Using discrete circuits:

- 1. Verification of the voltage divider rule in series and parallel circuits.
- 2. Study of V-I characteristics of a PN junction diode (Forward and Reverse Bias).
- 3. Study of V-I characteristics of a Zener diode.
- 4. Design and verification of a half-wave rectifier using a diode and a resistor.
- 5. Design and verification of a full-wave bridge rectifier.
- 6. Analysis of a common-emitter amplifier using a BJT.
- 7. Verification of logic gates and implementation of Boolean expressions.

Part B

Using Multisim:

- 1. Verification of KVL and KCL in a resistive network.
- 2. Simulation and analysis of diode Clipping and Clamping circuits.
- 3. Simulation of Inverting, Non-Inverting, and unity gain amplifiers using Op-Amp.
- 4. Design and simulate a half adder and a full adder using logic gates.

Course Outcom	Course Outcomes: At the end of the course, the student will be able to:							
BBEC206L.1	Apply fundamental electrical laws and circuit theorems to analyze basic analog electronic circuits.							
BBEC206L.2	Analyze the behavior of semiconductor devices under various biasing and circuit conditions.							
BBEC206L.3	Design and analyze operational amplifier-based circuits.							
BBEC206L.4	Construct digital logic circuits using gates and verify their logical functionality.							
BBEC206L.5	Design combinational logic circuits and validate their performance using simulation tools.							
BBEC206L.6	Create an innovative solution using analog and digital concepts by designing and demonstrating an application-oriented circuit/system.							

Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Text	books			
1	Fundamentals of Electric Circuits	Charles K Alexander & Matthew N O Sadiku	McGraw Hill	6 th Edition, 2016
2	Electronic Devices and Circuit Theory	Robert L Boylestad & Louis Nashelsky	Pearson	11 th Edition, 2012
3	Digital Fundamentals	Thomas L. Floyd	Pearson	11 th Edition, 2018
Refer	rence Books			
1	Electronic Devices and Circuits	David A Bell	Oxford University Press	5 th Edition, 2008
2	Basic Electronics	D P Kothari and I J Nagrath	McGraw Hill	2 nd Edition, 2018
3	Basic Electronics	R. D. Sudhakar Samuel, U. B. Mahadevaswamy, V. Nattarasu	Pearson	3 rd Edition, 2017

Web links and Video Lectures (e-Resources):

- https://nptel.ac.in/courses/117106108
- https://nptel.ac.in/courses/108101091

Course Articulation Matrix

					Prog	gram (Outco	mes (I	POs)				
Course Outcomes (COs)	P01	P02	PO3	P04	P05	P06	P07	PO8	P09	PO10	P011	PS01	PS02
BBEC206L.1	3	2	-	-	-	-	-	-	-	-	-	-	-
BBEC206L.2	-	2	2	-	2	-	-	-	-	-	-	-	-
BBEC206L.3	-	-	3	2	2	-	-	-	-	-	-	-	-
BBEC206L.4	2	1	-	-	2	-	-	-	-	-	-	-	-
BBEC206L.5	2	2	-	-	2	-	-	-	1	-	-	-	-
BBEC206L.6	-	-	2	2	2	1	1	-	1	-	2	-	-

Balake Kannada				
Course Code	1BKBK207	CIE Marks	50	
Course Type	Theory	SEE Marks	50	
(Theory/Practical/Integrated)	Theory	Total Marks	100	
Teaching Hours/Week (L: T:P)	(1:0:0)	SEE	2 Hours	
Total Hours	15 hours	Credits	01	

- 1. To Create the awareness regarding the necessity of learning local language for comfortable and healthy life.
- 2. To enable learners to Listen and understand the Kannada language properly.
- 3. To speak, read and write Kannada language as per requirement.
- 4. To train the learners for correct and polite conservation.
- 5. To know about Karnataka state and its language, literature and General information about this state.

Module-1 Introduction to Kannada Language and Pronouns (3 hours)

Introduction to Kannada Language: Necessity of learning Kannada - importance in daily life, Easy learning of Kannada Language: tips for polite conservation, listening and speaking, transcription.

Pronouns: Personal pronouns, Possessive forms, Interrogative words.

Textbook 1: Chapter 1

Module-2 Nouns and Adjectives (3 hours)

Nouns: Possessive forms of nouns and Relative nouns.

Adjectives: Qualitative, Quantitative and Colour Adjectives, Numerals, Predictive Forms,

Locative case

Textbook 1: Chapter 2,3,4.

Module-3 Plural Forms, Numerals and Verb Forms (3 hours)

Plural Forms, Numerals: Dative Cases, and Numerals, Ordinal numerals and Plural markers.

Verb Forms: Defective/ Negative verbs& Colour Adjective

Textbook 1: Chapter 5-7.

Module-4 Functional Communication- Verb Usage and Expressions (3 hours)

Functional Communication: Permission, Commands, Encouragement and Warnings (Imperative sentences), Accusative Cases and Potential Forms in General communication.

Verb Usage: Helping Verbs, Corresponding Future and Negation verbs.

Expressions: Comparative, Relationship, Identification and Negation Words.

Textbook 1: Chapter 8-11.

Module-5 Tenses and Conversation Practice (3 hours)

Tenses: Different types of Tense, Time and Verbs. Formation of Past, Future and Present Tense Sentences with Verb Forms.

Conversation Practice: Daily Useful Kannada Vocabulary for Conversations

Textbook:1: Chapter 12, 13, 18

Course Outcomes: At the end of the course the student will be able to:

1BKBK207.1	Demonstrate the ability to understand and use basic Kannada words, personal pronouns, possessive forms, and interrogative words for effective day-to-day
	communication.
1BKBK207.2	Apply grammatical structures, including noun forms, adjectives, numerals, and
1DKDK207.2	relative nouns to construct meaningful Kannada sentences.
1BKBK207.3	Use dative cases, accusative cases, and locative forms in Kannada for general
1BKBK207.3	communication and workplace interactions.

1BKBK207.4	Develop the skill to use imperative sentences, helping verbs, and negation forms in various contexts such as giving commands, seeking permission, and making polite requests.
1BKBK207.5	Construct grammatically correct Kannada sentences in past, present, and future tense while effectively using verb forms.
1BKBK207.6	Engage in basic professional and social conversations using Kannada vocabulary relevant to engineering and daily life situations.

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
		Textbooks		
1	Balake Kannada	Dr. L Thimmesha	Prasaranga VTU Belagavi	1 st Edition 2020
		Reference Books		
1	Kannada Kali	Lingadevaru Halemane	Kannada University Hampi	4 th Edition 2016
2	Spoken Kannada	N.D Krishnamurthy Dr.S.M.Rameshchandra Swamy Abdul Rehman Pasha	Kannada Sahitya Parishat	2018
3	Vyavaharika Kannada	Dr. L Thimmesha Prof V Keshavamoorthy	Prasaranga VTU Belagavi	

Additional Resources: Web links/Video Lectures

- 1. https://youtu.be/RuRmq7VyCaQ?feature=shared
- $2. \ https://youtu.be/daY6TRvHFB4?feature=shared$

Course Articulation Matrix

Course		Program Outcomes (POs)									
Outcomes (COs)	PO1	P02	P03	P04	P05	P06	PO7	P08	P09	PO10	P011
1BKBK207.1	-	-	-	-	-	-	-	-	2	-	2
1BKBK207.2	-	-	-	-	-	-	-	-	2	-	2
1BKBK207.3	-	-	-	-	-	-	-	-	2	-	2
1BKBK207.4	-	-	-	-	-	-	-	-	2	-	2
1BKBK207.5	-	-	-	-	-	-	-	-	2	-	2
1BKBK207.6	-	-	-	-	-	-	-	-	2	-	2

Samskrutika Kannada					
Course Code	1BKSK207	CIE Marks	50		
Course Type	Theory	SEE Marks	50		
(Theory/Practical/Integrated)		Total Marks	100		
Teaching Hours/Week (L:T:P)	(1:0:0)	SEE	2 hours		
Total hours	15 hours	Credits	01		

Course objectives

The course (1BKSK107) will enable the students to:

- 1. ಪದವಿ ವಿದ್ಯಾರ್ಥಿಗಳಾಗಿರುವುದರಿಂದ ಕನ್ನಡ ಭಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.
- 2.ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಪ್ರಧಾನ ಭಾಗವಾದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.
- 3. ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯನ್ನು ಮೂಡಿಸುವುದು.
- 4.ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯವನ್ನು ಹಾಗೂ ಅವರು ಸಾಧಿಸಿದ ವಿಷಯಗಳನ್ನು ಪರಿಚಯಿಸುವುದು.
- 5.ಸಾಂಸ್ಕೃತಿಕ, ಪರಿಸರ ಲೇಖನ ಹಾಗೂ ಕಥನಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು.
- 6. ತಾಂತ್ರಿಕ ಹಾಗೂ ಪಾರಿಭಾಷಿಕ ಕನ್ನಡ ಪದಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು

Teaching-Learning Process

These are sample Strategies, which teacher can use to accelerate the attainment of the various course outcomes andmake Teaching –Learning more effective:

- 1. ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡವನ್ನು ಬೋಧಿಸಲು ತರಗತಿಯಲ್ಲಿ ಶಿಕ್ಷಕರು ಪ್ರಸ್ತುತ ಪುಸ್ತಕ ಆಧರಿಸಿ ಬ್ಲಾಕ್ಬೋರ್ಡ್ ವಿಧಾನವನ್ನು ಅನುಸರಿಸುವುದು. ಪ್ರಮುಖ ಅಂಶಗಳ ಚಾರ್ಟ್ ಗಳನ್ನು ತಯಾರಿಸಲು ವಿದ್ಯಾರ್ಥಿಗಳನ್ನು ಪ್ರೇರೇಪಿಸುವುದು ಮತ್ತು ತರಗತಿಯಲ್ಲಿ ಅವುಗಳನ್ನು ಚರ್ಚಿಸಲು ಅವಕಾಶ ಮಾಡಿಕೊಡುವುದು.
- 2. ಇತ್ತೀಚಿನ ತಂತ್ರಜ್ಞಾನದ ಅನುಕೂಲಗಳನ್ನು ಬಳಸಿಕೊಳ್ಳುವುದು- ಅಂದರೆ ಕವಿ ಕಾವ್ಯ ಪರಿಚಯದಲ್ಲಿ ಕವಿಗಳ ಚಿತ್ರಣ ಮತ್ತು ಲೇಖನಗಳು ಮತ್ತು ಕಥೆ ಕಾವ್ಯಗಳ ಮೂಲ ಅಂಶಗಳಿಗೆ ಸಂಬಂಧಪಟ್ಟ ಧ್ವನಿ ಚಿತ್ರಗಳು ಸಂಭಾಷಣೆಗಳು ಈಗಾಗಲೇ ಇತರ ವಿಮರ್ಶಕರು ಬರೆದಿರುವ ವಿಮರ್ಶಾತ್ಮಕ ವಿಷಯಗಳನ್ನು ಡಿಪಿಟಿ, ಡಿಜಿಟಲ್ ಮಾಧ್ಯಮಗಳ ಮುಖಾಂತರ ವಿಶ್ವೇಷಿಸುವುದು.
- 3. ನವೀನ ಮಾದರಿಯ ಸಾಹಿತ್ಯ ಬೋಧನೆಗೆ ಸಂಬಂಧಪಟ್ಟ ವಿಧಾನಗಳನ್ನು ಶಿಕ್ಷಕರು ವಿದ್ಯಾರ್ಥಿಗಳಿಗೆ ಅನುಕೂಲವಾಗುವ ರೀತಿಯಲ್ಲಿ ಅಳವಡಿಸಿಕೊಳ್ಳಬಹುದು.

ಘಟಕ −1 ಕನ್ನಡ ಸಂಸ್ಕೃತಿ ಮತ್ತು ಭಾಷೆ ಕುರಿತಾದ ಲೇಖನಗಳು 3 Hours

- 1. ಕರ್ನಾಟಕ ಸಂಸ್ಕೃತಿ ಹಂಪ ನಾಗರಾಜಯ್ಯ
- 2. ಕರ್ನಾಟಕದ ಏಕೀಕರಣ : ಒಂದು ಅಪೂರ್ವ ಚರಿತ್ರೆ ಜಿ. ವೆಂಕಟಸುಬ್ಬಯ್ಯ
- 3. ಆಡಳಿತ ಭಾಷೆಯಾಗಿ ಕನ್ನಡ ಡಾ. ಎಲ್. ತಿಮ್ಮೇಶ ಮತ್ತು ಪ್ರೊ. ವಿ. ಕೇಶವಮೂರ್ತಿ

ಘಟಕ – 2 ಆಧುನಿಕ ಪೂರ್ವದ ಕಾವ್ಯ ಭಾಗ

3 Hours

- 1. ವಚನಗಳು: ಬಸವಣ್ಣ, ಅಕ್ಕಮಹಾದೇವಿ, ಅಲ್ಲಮಪ್ರಭು, ಆಯ್ದಕ್ಕಿ ಮಾರಯ್ಯ, ಜೇಡರದಾಸಿಮಯ್ಯ, ಆಯ್ದಕ್ಕಿ ಲಕ್ಕಮ್ಮ.
- 2. ಕೀರ್ತನೆಗಳು: ಅದರಿಂದೇನು ಫಲ ಇದರಿಂದೇನು ಫಲ ಪುರಂದರದಾಸರು ತಲ್ಲಣಿಸದಿರು ಕಂಡ್ಯ ತಾಳು ಮನವೇ - ಕನಕದಾಸರು
- 3. ತತ್ವಪದಗಳು : ಸಾವಿರ ಕೊಡಗಳ ಸುಟ್ಟು ಶಿಶುನಾಳ ಶರೀಫ

ಘಟಕ – 3 ಆಧುನಿಕ ಕಾವ್ಯ ಭಾಗ

3 Hours

- 1. ಡಿ.ವಿ.ಜಿ ಮಂಕುತಿಮ್ಮನ ಕಗ್ಗದಿಂದ ಆಯ್ದ ಕೆಲವು ಭಾಗಗಳು
- 2. ಶ್ರಾವಣ: ದ.ರಾ. ಬೇಂದ್ರೆ
- 3. ರೊಟ್ಟಿ ಮತ್ತು ಕೋವಿ ಸು.ರಂ.ಎಕ್ಕುಂಡಿ

ಘಟಕ – 4 ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ

3 Hours

- 1. ಡಾ.ಸರ್.ಎಂ.ವಿಶ್ವೇಶ್ವರಯ್ಯ : ವ್ಯಕ್ತಿ ಮತ್ತು ಐತಿಹ್ಯ ಎ. ಎನ್. ಮೂರ್ತಿರಾವ್
- 2. ತಾಂತ್ರಿಕ ಹಾಗೂ ಪಾರಿಭಾಷಿಕ ಕನ್ನಡ ಪದಗಳು

ಘಟಕ - 5 ಕಥೆ ಮತ್ತು ಪರಿಸರ ಲೇಖನ

3 Hours

- 1. ಬೆಡ್ ನಂಬರ್ 7 (ಕಥೆ)
- 2. ಚೀಂಕ್ರ ಮೇಸ್ಕ್ರಿ ಮತ್ತು ಅರಿಸ್ಟಾಟಲ್ ಕೆ.ಪಿ.ಪೂರ್ಣಚಂದ್ರ ತೇಜಸ್ವಿ (ಪರಿಸರ ಲೇಖನ)

Course Outcomes:	Course Outcomes:					
ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ	ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ (22KSK17/27) ಪಠ್ಯ ಕಲಿಕೆಯ ನಂತರ ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ :					
At the end of the co	ourse the student will be able to:					
1BKSK207.1	ಕನ್ನಡ ಬಾಷೆ, ಸಾಹಿತ್ಯ ಮತ್ತು ಕನ್ನಡದ ಸಂಸ್ಕೃತಿಯ ಕುರಿತು ಅರಿವು ಮೂಡಿರುತ್ತದೆ					
1BKSK207.2	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ಆಧುನಿಕ ಪೂರ್ವ ಮತ್ತು ಆಧುನಿಕ ಕಾವ್ಯಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಕಲಿತು ಹೆಚ್ಚಿನ ಓದಿಗೆ ಮತ್ತು ಜ್ಞಾನಕ್ಕೆ ಸ್ಫೂರ್ತಿ ಮಾಡುತ್ತದೆ					
1BKSK207.3	ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಸಾಹಿತ್ಯ ಮತ್ತು ಸಂಸ್ಕೃತಿಯ ಬಗ್ಗೆ ಅರಿವು ಹಾಗೂ ಆಸಕ್ತಿಯನ್ನು ಹೆಚ್ಚಾಗುತ್ತದೆ					
1BKSK207.4	ತಾಂತ್ರಿಕ ವ್ಯಕ್ತಿಗಳ ಪರಿಚಯ ಹಾಗೂ ಅವರುಗಳ ಸಾದಿಸಿದ ವಿಷಯಗಳನ್ನು ತಿಳಿದುಕೊಂಡು ನಾಡಿನ ಇನ್ನಿತರ ವ್ಯಕ್ತಿಗಳ ಬಗ್ಗೆ ತಿಳಿದುಕೊಳ್ಳಲು ಕೌತುಕತೆ ಹೆಚ್ಚಾಗುತ್ತದೆ					
1BKSK207.5	ಕನ್ನಡ ಸಾಹಿತ್ಯದ ವಿವಿಧ ಪ್ರಕಾರಗಳು, ವ್ಯಕ್ತಿ ಪರಿಚಯ ಹಾಗೂ ಕಥೆಯ ತಂತ್ರಗಾರಿಕೆಗಳ ಅಧ್ಯಯನದ ಮೂಲಕ ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಓದು, ಬರಹ ಮತ್ತು ವಿಶ್ಲೇಷಣಾ ಸಾಮರ್ಥ್ಯವನ್ನು ವಿಕಸನಗೊಳಿಸುವುದು.					
1BKSK207.6	ಸಾಂಸ್ಕೃತಿಕ, ಜನಪದ ಹಾಗೂ ಪ್ರವಾಸ ಕಥನಗಳ ಪರಿಚಯ ಮಾಡಿಕೊಡುವುದು					

Textbooks:

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	ಸಾಂಸ್ಕೃತಿಕ ಕನ್ನಡ	ಡಾ.ಹಿ.ಚಿ.ಬೋರಲಿಂಗಯ್ಯ & ಡಾ.ಎಲ್.ತಿಮ್ಮೇಶ	ಪ್ರಸಾರಾಂಗ, ವಿಶ್ವೇಶ್ವರಯ್ಯ ತಾಂತ್ರಿಕ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಬೆಳಗಾವಿ	2022
2	ಕನ್ನಡ ಮನಸು	ಡಾ ಎಚ್ ಜೆ ಲಕ್ಕಪ್ಪ ಗೌಡ, ಡಾ ಕೆ ವಿ ನಾರಾಯಣ, ಡಾ ಮಲ್ಲಿಕಾ ಘಂಟಿ, ಡಾ ವಿವೇಕ ರೈ, ಡಾ ರಹಮತ್ ತರೀಕೆರೆ, ಪ್ರೊ.ಲಿಂಗದೇವರು ಹಳೇಮನೆ	ಪ್ರಸಾರಾಂಗ ಕನ್ನಡ ವಿಶ್ವವಿದ್ಯಾಲಯ, ಹಂಪಿ	2018

Reference Books:

1	ಕನ್ನಡ ಸಾಹಿತ್ಯಕೋಶ & ವ್ಯಾಕರಣ ಪುಸ್ತಕ	ರಾಜಪ್ಪ ದಳವಾಯಿ	ದಳವಾಯಿ ಪ್ರಕಾಶನ ಬೆಂಗಳೂರು	2008
2	ಕನ್ನಡ ಕ್ಲಿಷ್ಟಪದ ಕೋಶ (ಶಬ್ದದ ವ್ಯುತ್ಪತ್ತಿ ಸಹಿತ)	ಪ್ರೊ. ಜಿ. ವೆಂಕಟ ಸುಬ್ಬಯ್ಯ ಹಾಗೂ ರಾಜ್ಯಶ್ರೀ ಸತೀಶ್	ಪ್ರಿಸಮ್ ಬುಕ್ಸ್ ಪ್ರೈ.ಲಿ.	2006
3	ಸ್ವಚ್ಛ ಭಾಷೆ ಅಭಿಯಾನ – ಕಸವಿಲ್ಲದ ಕನ್ನಡಕ್ಕೊಂದು ಕೈಪಿಡಿ	ಶ್ರೀವತ್ಸ ಜೋಶಿ	ಸಾಹಿತ್ಯ ಪ್ರಕಾಶನ	2022

Additional Resources:

- 1) https://youtu.be/Vy6gc5x9Vo4?si=r2OfnHLO2w00sXrr
- 2) https://youtu.be/Maj-eDsjGvQ?si=ree_8BKve5w9Tl8U
- 3) https://youtu.be/4PslKzscekQ?si=V7nozqH6Y SXHoJw
- 4) https://youtu.be/N5Wn2NlzKng?si=LfBwxyFVMp5p6dNM
- 5) https://youtu.be/6w_gjI2DdjE?si=ydhXjoHtNmBEoQmj
- 6) https://youtu.be/FGR3r2t4XOo?si=fk7xFjSH7YHWW8vE
- 7) https://youtu.be/sG3Ztsk3iHs?si=1TULROnmOj2w0c1K

Course Articulation Matrix

Course				Prog	gram O	utcom	es (Po	Os)			
Outcomes (COs)	PO1	PO2	P03	PO4	PO5	P06	PO7	P08	P09	PO10	PO11
1BKSK207.1	-	-	-	-	-	-	-	-	3	-	2
1BKSK207.2	-	-	-	-	-	-	-	-	3	-	2
1BKSK207.3	-	-	-	-	-	-	-	-	2	-	2
1BKSK207.4	-	-	-	-	-	-	-	-	2	-	2
1BKSK207.5	-	-	-	-	-	-	-	-	3	-	2
1BKSK207.6	-	-	-	-	-	-	-	-	2	-	2

1: Low 2: Medium 3: High

Assessment Structure:

The assessment in each course is divided equally between Continuous Internal Evaluation (CIE) and the Semester End Examination (SEE), with each carrying 50% weightage.

- To qualify and become eligible to appear for SEE, in the CIE, a student must score at least 40% of 50 marks, i.e., 20 marks.
- To pass the SEE, a student must score at least 35% of 50 marks, i.e., 18 marks.
- Notwithstanding the above, a student is considered to have passed the course, provided the combined total of CIE and SEE is at least 40 out of 100 marks.

Continuous Internal Evaluation (CIE):

Two Unit Tests each of 30 Marks (duration 1 hour)

- First test is in the 8th week after the completion of 30-40 % of the syllabus
- Second test is in the 15th week after completion of 80-90% of the syllabus

Two assignments each of 10 Marks

2 assignments of 10 marks each have to be submitted during the semester and the total marks shall be considered for CIE.

Semester End Examination (SEE)

Semester End Examination (SEE) will be conducted for 50 marks and it will be multiple-choice objective type.

Prototype Fabrication and Testing				
Course Code:	1BPFT208L	CIE Marks	50	
Type of Course	Practical	SEE Marks	50	
Teaching Hours/Week (L:T:P)	(0:0:2)	Total	100	
Credits	01	Exam Hours	02	

- 1. Understand basic Manufacturing Processes used in the industry
- 2. Apply the advanced Manufacturing Processes in their Project work
- 3. Articulate embedded electronics and basics of electrical wiring
- 4. Apply the basic knowledge of design thinking in project work
- 5. Create a prototype using the skill learnt as a team in the project work

Module 1 Basic manufacturing process

<u>Carpentry</u> - Hand tools & machines, Types of joints, and Pattern making.

<u>Sheet Metal Practice</u> - Bending, punching, and drawing various sheet metal joints, development of joints.

<u>Joining</u> - Temporary and permanent joints between similar and dissimilar material by processes of chemical bonding, mechanical fasteners, and fusion technologies

<u>Safety in Workshop</u> - Fire hazards, electric short circuit —causes and remedies, Machine protection, Human protection, Accident prevention methods, developing ability to observe safe working habits.

Wood Lathe.

Basics of drilling, milling and grinding operations.

08 Hours

Module 2 Basic electronic fabrication and test practices

Basic electronic components, PCB design and fabrication- etching and milling, Electronic testing equipment, Basic electrical wiring

06

Hours

Module 3 Advanced manufacturing process

Part modelling and 3D printing, 3D scanners, Laser cutting and engraving, CNC wood router, Vinyl Cutter and Power tool operations **06 Hours**

Module 4 Basics of Design Thinking (For CIE only)

Definition of Design Thinking, need for Design Thinking, Objective of Design Thinking, Stages of Design Thinking Process—Empathize, Define, Ideate, Prototype, Test (explain with examples)

02 Hours

Course Outcomes: At	Course Outcomes: At the end of the course, the student will be able to:				
1BPFT208L.1	perform basic manufacturing operations used in the industry				
1BPFT208L.2	use the advanced manufacturing processes for prototype building				
1BPFT208L.3	develop simple PCB boards using etching and milling process				
1BPFT208L.4	use basic electronic components and test its working				
1BPFT208L.5	apply design thinking to product development				
1BPFT208L.6	inculcate the teamwork and communication skills				

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
Refe	rence Books			
1	Fab Lab: Revolution Field Manual	Niggli Verlag	Massimo Menichinelli	2017
2	Skill Development and Entrepreneurship in India	Rameshwari Pandya	Ingram short title	2016
3	101 Design Methods: A Structured Approach for Driving Innovation in Your Organization	Vijay Kumar	Wiley	2012

Web links/Video Lectures

- 1. https://fabacademy.org/
- $2.\ \underline{https://www.youtube.com/watch?v=gHGN6hs2gZY\&t=33s}$
- 3. https://www.youtube.com/watch?v=4nTh3AP6knM

Course	Program Outcomes (POs)										
Outcomes (COs)	P01	P02	P03	P04	PO5	PO6	PO7	PO8	P09	PO10	P011
1BPFT208L.1			3								-
1BPFT208L.2	2	3		3	3						-
1BPFT208L.3	2	3									-
1BPFT208L.4	2	3									-
1BPFT208L.5		3	3								-
1BPFT208L.6								3	3	3	-

1: Low 2: Medium 3: High

Industry Oriented Training-Soft Skills								
Course Code	1BITS209	CIE Marks	50					
Course Type	Theory	SEE Marks	-					
(Theory/Practical/Integrated)	Theory	Total Marks	50					
Teaching Hours/Week (L:T:P)	(1:0:0)	SEE						
Total Hours	15 hours	Credits						

- 1. To Apply social skills for clear communication, persuasion, self-awareness, and active listening.
- 2. Use emotional skills to build confidence, manage stress, and adapt to change.
- 3. Set ambitious goals, practice empathy, and apply creativity for problem-solving.
- 4. Demonstrate discipline, time management, and structured problem-solving.
- 5. Work in teams, negotiate, resolve conflicts, and think critically.

Module-1 Social Skills (3 hours)

Communication: Principles of clear and effective exchange of ideas in professional and social contexts.

Persuasion: Techniques to influence and convince through logical, emotional, and ethical appeals.

Self-Awareness: Identifying personal strengths, weaknesses, opportunities, and challenges (SWOC analysis).

Active Listening: Paraphrasing, questioning techniques, and demonstrating attentiveness.

Module-2 Emotional Skills I (3 hours)

Emotional Intelligence (EI): Recognizing and managing emotions, empathy, relationship management, and conflict resolution.

Stress Management: Identifying stress triggers, relaxation techniques, work-life balance strategies, and mindfulness practices.

Time Management: Prioritization (Eisenhower Matrix), setting SMART goals, avoiding procrastination, and effective scheduling.

Adaptability & Resilience: Handling change, bouncing back from setbacks, and developing a growth mindset.

Module-3 Emotional Skills II (3 hours)

Ambition & Goal Setting: Defining personal and professional aspirations, creating SMART goals, and aligning actions with long-term vision.

Sympathy & Empathy: Understanding emotional perspectives, differentiating between the two and applying them in workplace and social interactions.

Creativity & Innovation: Generating original ideas, problem-solving, and applying creative thinking techniques (mind-mapping, SCAMPER).

Module-4 Professional Skills I (3 hours)

Problem Solving: Identifying root causes, analysing options, and implementing solutions using methods like 5 Whys and Fishbone Diagram.

Discipline: Building consistency, accountability, and professional habits.

Time Management: Prioritizing tasks (Eisenhower Matrix), scheduling, avoiding procrastination.

Module-5 Professional Skills II (3 hours)

Collaboration & Teamwork: Working effectively in diverse teams, fostering trust, and achieving shared goals.

Negotiation & Conflict Resolution: Strategies to resolve differences and reach win- win outcomes.

Critical Thinking: The ability to analyze, evaluate, and synthesize information to make well-reasoned decisions.

Instructional	Each competency is taught and assessed through guided visualisations
Design	reflections, explainers and hands on activities conducted during lab
	sessions those build both conceptual understanding and real-world
	application.
Teaching	TBTL (Task-Based Teaching Learning) – interactive workshops,
Methodology	simulations, peer feedback. Eclectic Approach
Language Lab	Quicklrn.com
_	To embed skills, participants get hands-on through:
Experiential	Guided reflections and explainers to connect concepts with relatable real-

Learning	life situations								
Methods	Guided visualization to prompt reflection and self-discovery								
	Role-plays and activities to practice behaviours in context								
	Peer discussions to gain diverse perspectives.								
	Formative: Role-plays, group discussions, peer feedback.								
Assessment	Summative: Presentations, written reflections, problem-solving								
Methods	exercises.								

Course Outcomes: At the end of the course the student will be able to:

Course	course Outcomes. At the end of the course the student will be able to.						
CO1	Apply social skills to communicate clearly, persuade effectively, demonstrate self-						
	awareness, and practice active listening.						
CO2	Use emotional intelligence to build confidence, manage stress, adapt to change, and						
	practice resilience.						
CO3	Set personal and professional goals, demonstrate empathy, and apply creativity for						
	innovative problem-solving.						
CO4	Exhibit professional discipline, manage time efficiently, and apply structured approaches						
	to problem-solving.						
CO5	Collaborate effectively in teams, negotiate and resolve conflicts, and employ critical						
	thinking for decision-making.						
CO ₆	Demonstrate professional presentation, reflection, and interpersonal skills through role-						
	plays, simulations, and real-life application activities.						

Extra Reading

Sl. No.	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Principles of Scientific and Technical Writing	Pratap K. J. Mohapatra, Sanjib Moulick	McGraw-Hill Education India	First,2025
2	Soft Skills	Soma Mahesh Kumar	McGraw Hill Education India	First,2024
3	Effective Technical Communication	Ashraf M. Rizvi, Priyadarshi Patnaik,	McGraw-Hill Education India	Third,2024
4	A course in English pronunciation	Yadav, D. P.	Notion Publications.	First,2022

Learning Resources:

- Oxford Advance Learners Dictionary
- Cambridge English Skills Real Listening and Speaking by Miles Craven
- Communicative English for Professionals by Nitin Bhatnagar and Mamta Bhatnagar

Additional Resources: Web links/NPTEL Courses Digital Resources

- Google Docs + Voice Typing https://docs.google.com
- LearnEnglish https://learnenglish.britishcouncil.org/
- TakeIELTS https://www.britishcouncil.in/exam/ielts
- British Council Apps BBC Learning English Online Grammar
 Learn English Podcasts
 IELTS Word Power

Learn English Sounds Right (Phonemic Chart).

Course Articulation Matrix

Course		Program Outcomes									
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
1								1	3		2
2									3		2
3									3		2
4								1	3		2
5								1	3		2
6								3	3		

1: Low 2: Medium 3: High

Core Values of the Institution

SERVICE

A Josephite will keep service as the prime goal in everything that is undertaken. Meeting the needs of the stakeholders will be the prime focus of all our endeavors.

EXCELLENCE

A Josephite will not only endeavor to serve, but serve with excellence. Preparing rigorously to excel in whatever we do will be our hallmark.

ACCOUNTABILITY

Every member of the SJEC Family will be guided to deliver on assurances given within the constraints set. A Josephite will always keep budgets and deadlines in mind when delivering a service.

CONTINUOUS ADAPTATION

Every member of the SJEC Family will strive to provide reliable and continuous service by adapting to the changing environment.

COLLABORATION

A Josephite will always seek to collaborate with others and be a team-player in the service of the stakeholders.

Objectives

- Provide Quality Technical Education facilities to every student admitted to the College and facilitate the development of all round personality of the students.
- Provide most competent staff and excellent support facilities like laboratory, library and internet required for good education on a continuous basis.
- Encourage organizing and participation of staff and students in in-house and outside Training programmes, seminars, conferences and workshops on continuous basis.
- Provide incentives and encouragement to motivate staff and students to actively involve in research-innovative projects in collaboration with industry and R&D centres on continuous basis
- Invite more and more number of persons from industry from India and abroad for collaboration and promote Industry-Institute Partnership.
- Encourage consultancy and testing and respond to the needs of the immediate neighbourhood.

St Joseph Engineering College

AN AUTONOMOUS INSTITUTION

Affiliated to VTU, Belagavi | Recognised by AICTE, New Delhi Accredited by NAAC with A+ Grade Vamanjoor, Mangaluru - 575 028, Karnataka, India Ph: 91-824-2868100 / 2263753 / 54 / 55 E-mail: sjec@sjec.ac.in| Website: www.sjec.ac.in

